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Abstract. Geophysical time series are sometimes sampled
irregularly along the time axis. The situation is particularly
frequent in palaeoclimatology. Yet, there is so far no gen-
eral framework for handling the continuous wavelet trans-
form when the time sampling is irregular.

Here we provide such a framework. To this end, we define
the scalogram as the continuous-wavelet-transform equiva-
lent of the extended Lomb–Scargle periodogram defined in
Part 1 of this study (Lenoir and Crucifix, 2018). The signal
being analysed is modelled as the sum of a locally periodic
component in the time–frequency plane, a polynomial trend,
and a background noise. The mother wavelet adopted here
is the Morlet wavelet classically used in geophysical appli-
cations. The background noise model is a stationary Gaus-
sian continuous autoregressive-moving-average (CARMA)
process, which is more general than the traditional Gaussian
white and red noise processes. The scalogram is smoothed by
averaging over neighbouring times in order to reduce its vari-
ance. The Shannon–Nyquist exclusion zone is however de-
fined as the area corrupted by local aliasing issues. The local
amplitude in the time–frequency plane is then estimated with
least-squares methods. We also derive an approximate for-
mula linking the squared amplitude and the scalogram. Based
on this property, we define a new analysis tool: the weighted
smoothed scalogram, which we recommend for most anal-
yses. The estimated signal amplitude also gives access to
band and ridge filtering. Finally, we design a test of signifi-
cance for the weighted smoothed scalogram against the sta-
tionary Gaussian CARMA background noise, and provide al-
gorithms for computing confidence levels, either analytically

or with Monte Carlo Markov chain methods. All the analysis
tools presented in this article are available to the reader in the
Python package WAVEPAL.

1 Introduction

The continuous wavelet transform (CWT) is widely used
for the time–frequency analysis of geophysical time series,
mainly through its scalogram, which is the squared mod-
ulus of the CWT. The CWT relies on a probing function,
called the mother wavelet. A common choice for the mother
wavelet is the Morlet wavelet (Grossmann and Morlet, 1984),
which is well suited for the analysis of signals whose com-
ponents have a time-varying frequency and/or a time-varying
amplitude. The scalogram is then often smoothed to re-
duce its variance, and significance testing against a station-
ary Gaussian white or red noise is commonly applied. State-
of-the-art references in climate for the analysis of regularly
sampled time series include Torrence and Compo (1998),
who provide the basis for the subsequent works; Torrence
and Webster (1999), who define a smoothing method for
the scalogram (which is a particular case of the wavelet co-
herency developed in there); and Maraun and Kurths (2004)
and Maraun et al. (2007), who build more reliable signifi-
cance tests for the smoothed scalogram. A non-exhaustive
list of the applications, in climatology, of the scalogram of
the CWT with the Morlet wavelet, includes the following.
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– Studies in climate and weather: analysis of the El Niño
Southern Oscillation in Torrence and Compo (1998),
analysis of the Arctic oscillation in Grinsted et al.
(2004), or the analysis of daily precipitation in the Alps
in Schaefli et al. (2007).

– Studies in palaeoclimate: analysis of the astronomical
forcing in Berger et al. (1998), analysis of the mid-
Pleistocene transition in Elderfield et al. (2012), or the
analysis of the equatorial Pacific thermocline over the
last eight glacial periods in Regoli et al. (2015).

Most of these studies use the algorithms provided by the pa-
pers cited above or similar algorithms, and all of them re-
quire the data to be regularly spaced. However, it may hap-
pen that the time series be intrinsically irregularly sampled
(this actually happens in some of the above examples) and it
is then interpolated on a regularly spaced grid in order to ap-
ply the algorithms of the CWT and its scalogram. But the in-
terpolation procedure may seriously affect the analysis with
unpredictable consequences for the scientific interpretation,
especially when performing significance testing. This is il-
lustrated in Appendix F.

A solution to this problem was addressed by Foster in
a series of articles which share a common thread with our
two papers, in the sense that it first generalises the Lomb–
Scargle periodogram, based on orthogonal projection meth-
ods, in Foster (1996a) and Foster (1996b), and then extends
the formalism to the continuous wavelet transform, in Fos-
ter (1996c), allowing the time series not to be interpolated.
Foster’s formulas were motivated by the astronomical study
of the light curves of variable stars, which are unevenly sam-
pled time series with large gaps. The methods presented in
this article are influenced by Foster’s theory and it is shown
in Appendix E2 that most of its formulas can actually be de-
duced from our general framework. The main limitations of
Foster’s theory are the following (see Appendix E2 for de-
tailed explanations): significance testing is only performed
for the white noise background case, it only deals with the
unsmoothed scalogram, and the areas in the time–frequency
plane corrupted by aliasing are underestimated. It therefore
suffers from a limited interest in geophysical applications1.
Another study tackling the problem of the estimation of the
scalogram of irregularly sampled time series, without inter-
polating the data, is given in Mathias et al. (2004). In there,
the authors propose an estimator of the amplitude of the sig-
nal, locally in the time–frequency plane, but no significance
testing is performed. The other limitations of their algorithm
are basically the same as for Foster’s formulas. This is de-
tailed in Appendix E3.

In this article, we extend the analysis tools that we de-
rived in the first part of this study (Lenoir and Crucifix, 2018)
in the case of the frequency analysis of irregularly sampled

1An application of Foster’s formulas on palaeoclimate data is
found in Witt and Schumann (2005).

time series. They are based on a similar model, which is a lo-
cally periodic component in the time–frequency plane, plus
a polynomial trend, plus a stationary Gaussian continuous
autoregressive-moving-average (CARMA) process. Let us
sketch the main points of the article. First, the taper of the pe-
riodogram, derived in Lenoir and Crucifix (2018, Sect. 4.4),
is chosen here to be a time-dependent Gaussian function with
a variance depending on the scale in order to define the Mor-
let wavelet-based scalogram. This is detailed in Sect. 3.2 of
this work. Second, the scalogram is smoothed in order to re-
duce its variance, by averaging over neighbouring times. To
this end, we apply the same formula as in Cohen and Walden
(2010). This is explained in Sect. 3.4. Third, in Sect. 3.5,
we estimate the amplitude of the locally periodic compo-
nent, extending the results obtained in Sect. 6 of Part 1, and
define, in Sect. 3.6 of this article, the weighted smoothed
scalogram as the time–frequency analogue of the weighted
WOSA periodogram defined in the first part of this study
(Lenoir and Crucifix, 2018). Fourth, we define in Sect. 3.8
the Shannon–Nyquist exclusion zone (SNEZ) as the area of
the time–frequency plane which must be excluded from the
analysis because of the local aliasing issues. Fifth, we design
a test of significance for the weighted smoothed scalogram,
against the stationary Gaussian CARMA background noise.
This is based on the theory developed in Sect. 5 of Part 1.
More specifically, we define a null and an alternative hypoth-
esis, and estimate the distribution of the weighted smoothed
scalogram under the null hypothesis, either analytically, con-
serving the first moments of the distribution, or with Markov
Chain Monte Carlo (MCMC) methods. The latter approach
allows the uncertainty in the parameters of the CARMA
background process to be fully taken into account. This is
presented in Sect. 4. Sixth, we provide, in Sect. 5, formu-
las for filtering the signal in a band delimited by two scales,
or with the ridges, which are the lines going through the
maxima of the estimated amplitude, in the time–frequency
plane. Ridge filtering is based on state-of-the-art algorithms
provided in Lilly and Olhede (2010) and (https://github.
com/jonathanlilly/jLab). Seventh, we define in Sect. 6 the
global scalogram as the time-averaged weighted smoothed
scalogram, resulting in a periodogram-like analysis tool with
a frequency-varying bandwidth. Eighth, we illustrate, in
Sect. 7, the theory on the same palaeoclimate data set as in
our first article (Lenoir and Crucifix, 2018). Finally, a Python
package named WAVEPAL is available to the reader and is
presented in Sect. 8. Before tackling the problem of irregu-
larly sampled time series, the paper starts with the theory of
the CWT applied to continuous-time signals. This gives the
bases for the subsequent developments.

Most of the mathematical concepts and notations are in-
troduced in the first part of this study (Lenoir and Crucifix,
2018), and the reader is invited to revise them. Throughout
this article, we will denote the equations of the preceding pa-
per by, for example, “Eq. (I,30)”, meaning “the equation (30)
of Part 1”, and will refer to the paper itself by “Part 1”.
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2 The continuous wavelet transform of
continuous-time processes

2.1 The continuous wavelet transform and its
scalogram

The mathematical background to Fourier analysis is given in
Appendix A. Let S denote the Schwartz space. The continu-
ous wavelet transform of a function x ∈ S(R) is

Sx(τ,a)= 〈ψτ,a|x〉, (1)

where ψτ,a ∈ S(R) is defined by

ψτ,a(t)= c(a)ψ

(
t − τ

a

)
. (2)

Here, ψ is called the mother wavelet, τ ∈ R is the translation
time, a ∈ R+0 is the scale, and c(a)∼ am withm ∈Q. We can
write the CWT as a convolution product,

Sx(τ,a)=
(
ψ]a ? x

)
(τ ), (3)

where

ψ]a(t)= c(a)ψ

(
−t

a

)
, (4)

in which · denotes the complex conjugate. From the convo-
lution theorem,

Ŝx(ω,a)=
√

2πψ̂]a(ω)̂x(ω)=
√

2πa c(a)ψ̂(aω)̂x(ω), (5)

and Sx(τ,a) is then obtained by taking the inverse Fourier
transform.
|Sx(τ,a)|

2 gives the local power in the time–scale plane,
and is called the scalogram by analogy with the peri-
odogram.

2.2 The wavelet power spectrum

The wavelet power spectrum (WPS) of a continuous-time
stochastic process {x(t)}t∈R is defined by the following (see
Li and Oh, 2002; Maraun and Kurths, 2004):

WPSx(τ,a)= E{|Sx(τ,a)|2}, (6)

where the expectation is taken over the samples of the
stochastic process. A simple example is the WPS of a real-
valued stationary white noise. Define {η(t)}t∈R satisfying the
following covariance property:

E{η(t)η(t ′)} = σ 2δ(t − t ′). (7)

Its WPS is then

WPSη(τ,a)= a c(a)2||ψ ||2σ 2. (8)

2.3 The Morlet wavelet as the mother wavelet

In this article, we choose the mother wavelet ψ to be the
Morlet wavelet (Grossmann and Morlet, 1984):

ψ(t)= (9)

π−1/4σ
−1/2
0

[
exp(iω0t)− exp

(
−ω2

0σ
2
0 /2

)]
exp

(
−t2/2σ 2

0

)
.

This mother wavelet is a complex plane wave weighted by
a Gaussian, to which is added a correction term to make it
admissible2, i.e. satisfying

∫
+∞

−∞
dω|ψ̂(ω)|2|ω|−1 <∞. This

correction term is negligible3 for σ0ω0 ≥ 5.5. If this inequal-
ity is satisfied, and with the variable change a′ = a/ω0, the
CWT with the Morlet wavelet is

S(τ,a′)= (10)

c(a′)

+∞∫
−∞

dt exp
(
−
i(t − τ)

a′

)
exp

(
−
(t − τ)2

2σ 2
0ω

2
0a
′2

)
x(t),

where c(a′)∼ (a′)m, m ∈Q, and c(a′) holds all the multi-
plicative constants. Without loss of generality, we impose
σ0 = 1 and assume that

ω0 ≥ 5.5 (11)

is fulfilled in the following of this article. Therefore,

S(τ,a)= c(a)

+∞∫
−∞

dt exp
(
−
i(t − τ)

a

)
exp

(
−
(t − τ)2

2ω2
0a

2

)
x(t)

= (ψ]a ? x)(τ ), (12)

where

ψ]a(t)= c(a)exp(it/a)exp
(
−t2/2ω2

0a
2
)
. (13)

Under this form, interpreting Eq. (12) is straightforward: the
CWT is the inner product between the signal x and a Gaus-
sian wave packet centred in τ = t , of period 2πa, and with
numerical support4 of length 6ω0a. As the scale increases
(decreases), the support becomes wider ( narrower).

2.4 On the parameter c(a)

There are two common choices for c(a) (see Maraun and
Kurths, 2004, Sect. 3). The first one is c(a) proportional to
1/
√
a,

c(a)∼
1
√
a
, (14)

2The admissibility criteria is required for ψ to be a wavelet
(Holschneider, 1995, p. 5).

3We have exp(−(5.5)2)= 7.288× 10−14 and
exp(−(5.5)2/2)= 2.700× 10−7.

4The length of the support of the Gaussian may be approximated
by 6 times its standard deviation.
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and gives a constant L2 norm for ψτ,a , namely ||ψτ,a|| =
||ψ ||. This implies that the wavelet power spectrum of a
white noise is flat, as we can see in Eq. (8). The second choice
is

c(a)∼
1
a
, (15)

which gives a constant L1 norm for ψτ,a and, most impor-
tantly, gives the same maximal power for sines of the same
amplitude and with different frequencies. Indeed, from the
Fourier transform of ψ]a ,

ψ̂
]
a(ω)= c(a)aω0 exp

(
−
ω2

0(ωa− 1)2

2

)
, (16)

and applying Eq. (5), we must require c(a)a to be constant
to have the maxima of the scalogram of a sum sine waves
(all with the same amplitude but with different frequencies)
invariant with the scale.

2.5 The parameter ω0 and the time–frequency
resolution

The parameter ω0 controls the time–frequency resolution,
as it can be seen from the standard deviations of the Gaus-
sian weights in ψ]a , Eq. (13), and in its Fourier transform,
Eq. (16). The standard deviations are equal to ω0a and 1/ω0a

respectively. Consequently, for a fixed scale, increasing (de-
creasing) the value of ω0 will generate a CWT with a better
(worse) frequency resolution and a worse (better) time res-
olution. This property is of primary importance for the ap-
plications to time series, as illustrated in Sect. 7. Note that,
for any time–frequency transform, there is always a trade-
off between time and frequency localisation according to the
Fourier uncertainty principle. The Morlet wavelet exhibits
the best trade-off, thanks to its Gaussian shape. We provide
further details on this topic in Appendix B.

2.6 Scale-to-period conversion

The Morlet wavelet is often used to detect the periodicities
in a signal, and it is therefore suitable to convert scales a into
periods T (Meyers et al., 1993). In practice, take a signal
x(t)= Aexp(iωt)= Aexp(i2πt/T ). Its scalogram writes

|S(τ,a)|2 = 2πAc(a)2ω2
0a

2 exp
(
−ω2

0(ωa− 1)2
)
, (17)

and is independent of τ . Scale-to-period conversion is per-
formed with the value of the scale for which |S(τ,a)|2 is at
its maximum (as a function of a). We find the following:

T =


2πa if c(a)∼ 1/a,

4πω0a

ω0+

√
ω2

0 + 2
if c(a)∼ 1/

√
a. (18)

For a fixed scale, and while ω0 ≥ 5.5, the difference between
both never exceeds 2 %.

2.7 Reconstruction with the amplitude ridges

Reconstruction of a signal can be performed with the CWT
along the amplitude ridges5 (Carmona et al., 1997), which
are the lines going through the maxima of the scalogram. In-
deed, take the signal x(t)= Aexp(iωt) and c(a)∼ 1/a. Its
scalogram is maximum at a = 1/ω (from Eq. 17) and we can
therefore easily recover the amplitude A at each time τ , go-
ing through the ridge a(τ)= 1/ω in the scalogram, on which
we have |S(τ,1/ω)| = αA∀τ , where α ∈ R is a multiplica-
tive constant. Jointly with the amplitude, the full signal x(t)
can be exactly recovered from the CWT along the ridge.

This can be extended to signals with slowly varying am-
plitude and phase (see Delprat et al., 1992; Carmona et al.,
1997), namely,

x(t)= A(t)exp(iφ(t)), such that
∣∣∣∣dφdt

∣∣∣∣� ∣∣∣∣ 1
A

dA
dt

∣∣∣∣ , (19)

for which the CWT taken along the ridge, i.e. at the max-
ima of its modulus, can approximately reconstruct x(t).
The inequality in Eq. (19), called the asymptoticity condi-
tion, means that the instantaneous frequency inside the wave
packet must be much smaller than the frequency of the am-
plitude of the wave packet. The analysis can be further ex-
tended to a sum of asymptotic signals plus noise, which
can be detected by multiple ridges (Carmona et al., 1999).
When considering a real signal like x(t)= A(t)cos(φ(t)),
we have to work with its analytic counterpart, which is built
from the Fourier transform of x, x̂, for which we impose
x̂(ω < 0)= 0 and then take the inverse Fourier transform.
Analyticity ensures that the phase and amplitude of a signal
are uniquely determined (see Lilly and Olhede, 2010, and
the references therein for more details). State-of-the-art al-
gorithms for ridge detection are developed in Lilly and Ol-
hede (2010) and are available for use in the package jLab
(https://github.com/jonathanlilly/jLab), in which the ridge-
finding algorithm is general enough to be applied to various
mother wavelets, such as the Morlet wavelet.

By construction, ridge filtering is well-adapted for filter-
ing a multi-periodic signal, even if it is plunged in a noisy
environment (Lilly and Olhede, 2010). In such conditions, it
outperforms the techniques based on the Hilbert transform.
As mentioned in Lilly and Olhede (2010, p. 4135), “[...] the
Hilbert transform can lead to disastrous results as the ampli-
tude and phase will then reflect the aggregate properties of
the multi-component signal”.

5Another type of ridge is the phase ridge, defined in Delprat
et al. (1992), but we consider only the amplitude ridges in this study
since they are easier to generalise to irregularly time series. A com-
parison of both the amplitude and phase ridges is found in Lilly and
Olhede (2010).
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2.8 Writing the scalogram under the formalism of
orthogonal projections

Finally, we mention that the scalogram can be written under
the formalism of orthonormal projections. Indeed, defining

yτ,a(t)=
π−1/4
√
ω0a

exp
(
i(t − τ)

a

)
exp

(
−
(t − τ)2

2ω2
0a

2

)
, (20)

which has a unit norm, the scalogram can be formulated as

|S(τ,a)|2 = γ (a)|〈yτ,a|x〉|
2

= γ (a)||
|yτ,a〉〈yτ,a|

〈yτ,a|yτ,a〉
|x〉||2, (21)

where γ (a)= α (α ∈ R) if c(a)∼ 1/
√
a, or γ (a)∼ 1/a if

c(a)∼ 1/a.

3 The continuous wavelet transform of irregularly
sampled time series

3.1 The model for the data

We consider the same model as in Part 1:

|X〉 = |Trend〉+Eτ,a cos(�|t〉+φτ,a)+ |Noise〉
= |Trend〉+Aτ,a|c�〉+Bτ,a|s�〉+ |Noise〉, (22)

where |X〉 = [X1, . . .,XN ]
′ and is real, |t〉 = [t1, . . ., tN ]′,

Aτ,a = Eτ,a cos(φτ,a), Bτ,a =−Eτ,a sin(φτ,a), E2
τ,a = A

2
τ,a

+B2
τ,a , |c�〉 = [cos(�t1), . . .,cos(�tN )]′ and |s�〉 =

[sin(�t1), . . .,sin(�tN )]′. We have added subscripts (τ,a)
since all the subsequent analyses will be done in the
time–scale plane. The trend is a polynomial of degree m,

|Trend〉 =
m∑
k=0

γk|t
k
〉, (23)

and the background noise term, |Noise〉, is a zero-mean sta-
tionary Gaussian CARMA process sampled at the times of
|t〉, as defined in Sect. 3.2 of Part 1. As stated in Part 1, con-
sidering or not the presence of a trend in the model for the
data is left to the user, given that we can always interpret a
polynomial trend of low order as a very low-frequency oscil-
lation.

3.2 The scalogram

When applying the CWT to finite discrete time series, a
choice for the discretisation must be made. In the influen-
tial paper of Torrence and Compo (1998), which deals with
regularly sampled time series, the expression under the form
of a convolution product in the Fourier space, Eq. (5), is
conserved, and computed with the discrete Fourier trans-
form (DFT) of the data. The CWT is then the inverse DFT

of the convolution product. Unfortunately, we cannot extend
the convolution theorem6 to irregularly spaced time series
and we cannot therefore follow the same computational pro-
cedure as in Torrence and Compo (1998). Alternatively, we
can conserve the squared norm of the orthogonal projection,
Eq. (21). The advantage of such a formalism is that it can be
applied to irregularly sampled time series, as shown in Part 1.
Similarly to Part 1, we work with cosines and sines instead
of working with complex exponentials. Very little difference
is observed between both choices. Based on the results of
Sect. 2.8, our Morlet wavelet scalogram for irregularly sam-
pled time series is therefore

||Psp{|Gτ,acτ,a〉,|Gτ,asτ,a〉}|X〉||
2, (24)

where Gτ,a is a diagonal matrix with diagonal elements

Gτ,aii = exp

(
−
(ti − τ)

2

2ω2
0a

2

)
, ∀i ∈ {1, . . .,N}, (25)

and

|cτ,a〉 = cos((|t〉− τ)/a), |sτ,a〉 = sin((|t〉− τ)/a), (26)

are vectors of lengthN . We can impose τ = 0 into the cosine
and sine terms, since sp{|Gτ,acτ,a〉, |Gτ,asτ,a〉} is invariant
with respect to the variable τ appearing in the cosine and
sine, and the scalogram becomes

||Psp{|Gτ,aca〉,|Gτ,asa〉}|X〉||
2. (27)

In the following, the notations |Gτ,aca〉 and Gτ,a|ca〉 refer to
the same vector. Our wavelet scalogram is similar to the ta-
pered periodogram defined in Sect. 4.4 of Part 1, and its prop-
erties and generalisations will therefore be similar as well. In
particular, the variables a and τ are considered as continuous
variables, similarly to the continuous frequency variable of
Part 1.

When the time series is regularly sampled, the scalogram,
given by Eq. (27), is extremely close to what is obtained
with the traditional approach based on the convolution theo-
rem, e.g. in Torrence and Compo (1998), Maraun and Kurths
(2004) or Cohen and Walden (2010). This is illustrated with a
regularly sampled time series representing a noisy version of
the caloric summer insolation7 at 65◦ N, in Fig. 1b and c. We
also show the effect of randomly removing a large amount
of data points, with the resulting time series being irregu-
larly sampled. This is illustrated in Fig. 1d and we observe
that our algorithms still do a good job at estimating signifi-
cant regions, although there are some artefacts and the power
tends to be overestimated.

6The convolution theorem for continuous-time functions is
given in Appendix A, and its counterpart for regularly sampled time
series is given in Mallat (2009, p. 74).

7It is computed from the R package PALINSOL (https://CRAN.
R-project.org/package=palinsol) from the formulas of Berger
(1978) and the data of Laskar et al. (2004).
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Figure 1. (a) The regularly sampled (RS) time series, with 1t = 1 ka, which represents the caloric summer insolation at 65◦ N to which is
added a realisation of a Gaussian red noise process with α = 0.1 and σ equal to half of the standard deviation of the original time series
(these parameters are defined in Sect. 3.2.3 of Part 1). The red dots are obtained from randomly removing 75 % of the data points of the
RS time series, resulting in an irregularly sampled (IS) time series with 500 data points. Panels (b), (c) and (d) compare of the scalograms
with ω0 = 10, jointly with their 95 % analytical confidence levels against a red noise background. (b) Scalogram of the RS time series
computed with the classical approach. (c) Scalogram of the RS time series computed with WAVEPAL. (d) Scalogram of the IS time series
computed with WAVEPAL. The black zone, called the Shannon–Nyquist exclusion zone (SNEZ) and defined in Sect. 3.8, is the area where
the sampling is not sufficient to probe the lowest periods. In panels (b), (c) and (d), the two lateral shaded areas are the half-cones of
influence (see Sect. 3.7), and the bottom shaded area is the refinement of the SNEZ (defined in Sect. 3.10). The bounds of the colour scale
in the panels (b), (c) and (d) are the extrema of the scalogram in panel (c) over the non-shaded area in order to make a meaningful visual
comparison. Technical details about the computation of the scalogram and its confidence levels are given in Sects. 3 and 4.

Equation (27) reduces to the Lomb–Scargle periodogram,
defined in Eq. (I,40), if the weight Gτ,a is replaced by the
identity matrix. Similarly to the Lomb–Scargle periodogram,
we rescale |Gτ,aca〉 and |Gτ,asa〉 such that they are orthonor-
mal. This can be done by defining

|c]a〉 =
cos

(
|t〉/a−βτ,a

)√
6Ni=1G2

τ,aii
cos2

(
ti/a−βτ,a

) ,
|s]a〉 =

sin
(
|t〉/a−βτ,a

)√
6Ni=1G2

τ,aii
sin2 (ti/a−βτ,a) , (28)
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where βτ,a is the solution of

tan(2βτ,a)=
6Ni=1G2

τ,aii
sin(2ti/a)

6Ni=1G2
τ,aii

cos(2ti/a)
. (29)

The scalogram is then

||Psp{|Gτ,aca〉,|Gτ,asa〉}|X〉||
2
=

〈Gτ,ac
]
a|X〉

2
+〈Gτ,as

]
a|X〉

2. (30)

3.3 Scalogram and trend

Analogously to Sect. 4.3 of Part 1, we extend the scalo-
gram to take into account the presence of a polynomial trend
of degree m in the data. Indeed, the scalogram defined in
Sect. 3.2 applies well to data which can be modelled as
|X〉 = Aτ,a|c�〉+Bτ,a|s�〉+|Noise〉. If we want to work with
the full model, Eq. (22), holding a polynomial trend of degree
m, we define a new scalogram as

||

(
Psp{|t0〉,|t1〉,...,|tm〉,|Gτ,aca 〉,|Gτ,asa 〉}

−Psp{|t0〉,|t1〉,...,|tm〉}

)
|X〉||2, (31)

which is invariant with respect to the parameters of the trend.
This is the analogue of Eq. (I,57).

3.4 Smoothing the scalogram

The scalogram suffers from the same inconsistency issue as
the periodogram, in the sense that it remains very noisy re-
gardless of the number of data points we have at our dis-
posal8. Smoothing techniques must therefore be applied, and
we proceed like in Part 1, extending the formulas used with
regularly sampled time series. Note that the disadvantage
of any smoothing procedure is that the resolution (in time,
frequency or both, depending on the smoothing choice) is
reduced. Consequently, there is always a trade-off between
variance reduction and resolution.

Smoothing is traditionally performed by averaging the
scalogram over neighbouring points in the time–scale plane,
either by averaging over times followed by averaging over
scales (Torrence and Webster, 1999; Grinsted et al., 2004),
or simply by averaging over time (Cohen and Walden, 2010).
In this work, we apply the latter technique because, even for
very simple signals like |X〉 = sin(ω|t〉), the correlations in
the scalogram between neighbouring scales, for a fixed time,
are highly irregular when the time series is irregularly sam-
pled, unlike the correlations between neighbouring times, for
a fixed scale, which are driven by the Gaussian shape of the
wave packets |Gτ,aca〉 and |Gτ,asa〉. Smoothing over time
must be carried out in accordance with the length of the

8The scalogram often looks smooth because neighbouring points
in the time–frequency plane are strongly correlated, but it neverthe-
less remains inconsistent (see the discussion in Maraun and Kurths,
2004, Sect. 4.2).

support of the wave packets, which is proportional to the
scale and to parameter ω0 (Eq. 25). This choice also implies
that the number of oscillations over which smoothing is per-
formed is constant throughout the time–scale plane. This re-
sults from Eq. (26).

We adopt here the smoothing procedure of Cohen and
Walden (2010) for which they derived analytical asymptotic
results in the case of regularly sampled time series. The aver-
aging window is a square window with a length proportional
to the scale. Our smoothed scalogram is

||Psmoothed(τ,a)|X〉||
2
= (32)

1
2γω0a

τ+γω0a∫
τ−γω0a

dτ ′||
(

Psp{|t0〉,|t1〉,...,|tm〉,|Gτ ′ ,aca 〉,|Gτ ′ ,a sa 〉}
−Psp{|t0〉,|t1〉,...,|tm〉}

)
|X〉||2,

in which γ is called the smoothing coefficient. Appendix D
provides further details on the practical implementation of
the bounds of integration.

3.5 The amplitude scalogram

3.5.1 Definition

We want to estimate the amplitude Eτ,a =
√
A2
τ,a +B

2
τ,a of

our model, Eq. (22), at a given point (τ,a) in the time–scale
plane. The estimation of E2

τ,a is called the amplitude scalo-
gram and is denoted by Ê2

τ,a . We start with a trendless sig-
nal and derive an approximate formula linking the amplitude
scalogram and the scalogram.

3.5.2 Trendless signal

Formula (I,118) is applied with the left-hand-side term
changed to encompass wavelet formalism. Â and B̂ are de-
termined by projecting the data onto the tapered cosine and
sine:

Psp{|Gτ,aca〉,|Gτ,asa〉}|X〉 = Âτ,a|cω〉+ B̂τ,a|sω〉

= Vω2 |8̂τ,a〉, (33)

where the taper Gτ,a is defined in Eq. (25),

Vω2 =

 | |

|cω〉 |sω〉

| |

 , and |8̂τ,a〉 =
(
Âτ,a
B̂τ,a

)
. (34)

Conversion from the angular frequency ω to the scale a is
performed with the formula ω = 1/a (justification is given
in Sect. 3.9). Using the same development as in Sect. 6.2.2
of Part 1, we obtain

|8̂τ,a〉 = (V′a2
Gτ,aVa2)

−1V′a2
Gτ,a|X〉. (35)

The amplitude scalogram is then

Ê2
τ,a = || |8̂τ,a〉||

2. (36)
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The approximations made in Sect. 6.2.2 of Part 1 are valid in
this work, and applying Eq. (I,128) to our case gives an ap-
proximate formula linking the scalogram and the amplitude
scalogram, namely

Ê2
τ,a ≈

2tr
(
G2
τ,a

)
tr
(
Gτ,a

)2 ||Psp{|Gτ,aca〉,|Gτ,asa〉}|X〉||
2. (37)

Let us compare this equation with its continuous counterpart,
Eq. (21), in which the weight must be γ (a)∼ 1/a to get an
estimation of the local squared amplitude, as explained in
Sect. . The comparison is made by analysing the weight of
the right-hand-side term of Eq. (37) in the continuous limit:

1
1t

2tr
(
G2
τ,a

)
tr
(
Gτ,a

)2 (38)

−→

2
∫
+∞

−∞
dt exp

(
−
(t−τ)2

ω2
0a

2

)
(∫
+∞

−∞
dt exp

(
−
(t−τ)2

2ω2
0a

2

))2 =
1

√
πω0a

,

where1t is the average time step. This is proportional to 1/a
and it is therefore consistent with the continuous case.

3.5.3 Signal with a trend

Formula (I,129) is applied with the left-hand-side term
changed to encompass wavelet formalism:

Psp{|t0〉,|t1〉,...,|tm〉,|Gτ,aca〉,|Gτ,asa〉}
|X〉

=

m∑
k=0

γ̂k|t
k
〉+ Â|cω〉+ B̂|sω〉

= Vωm+3 |8̂〉, (39)

where

Vωm+3 =

 | | | |

|t0〉 . . . |tm〉 |cω〉 |sω〉

| | | |

 , (40)

and

|8̂〉 =


γ̂0
...

γ̂m
Â

B̂

 . (41)

Conversion from the angular frequency ω to the scale a is
performed with the formula ω = 1/a (justification is given
in Sect. 3.9). Using the same development as in Sect. 6.3 of
Part 1, we obtain

|8̂τ,a〉 =
(

W′τ,am+3
Vam+3

)−1
W′τ,am+3

|X〉, (42)

where Wτ,am+3 is identical to Vam+3 except in the last two
columns, where the cosine and sine are tapered by Gτ,a . This
gives

Âτ,a = 8̂τ,a(m+ 2), B̂τ,a = 8̂τ,a(m+ 3), (43)

where 8̂τ,a(m+2) and 8̂τ,a(m+3) are the two last compo-
nents of vector |8̂τ,a〉. The amplitude scalogram is then

Ê2
τ,a = Â

2
τ,a + B̂

2
τ,a . (44)

3.5.4 With smoothing

Like in Part 1, estimating the amplitude is more robust
against noise when a smoothing procedure is performed. We
apply to the squared amplitude, Eq. (44), the same kind of
smoothing as for the scalogram (see Eq. 32), giving

Ê2
τ,a = (45)

1
2γω0a

τ+γω0a∫
τ−γω0a

dτ ′
(
8̂τ,a(m+ 2)2+ 8̂τ,a(m+ 3)2

)
.

Appendix D provides further details on the practical imple-
mentation of the bounds of integration.

3.6 The weighted smoothed scalogram

The weighted smoothed scalogram is the analogue of the
weighted WOSA periodogram, defined in Sect. 7 of Part 1,
and its objectives are the same, i.e. to keep the advantages of
both the amplitude scalogram and the scalogram, namely,

– provide an estimation of the squared amplitude of a sig-
nal, locally in the time–frequency plane, by weighting
the scalogram like in Eq. (37);

– conserve the advantage of the formalism of orthogonal
projections in order to avoid the matrix inversions re-
quired for the computation of the amplitude scalogram
(see, for example, Eq. 45, relying on Eq. 42 which re-
quires a matrix inversion).

The last item is useful for building confidence levels when
performing a test of significance (see Sect. 4). The disadvan-
tage of weighting the smoothed scalogram is that it no longer
provides a flat pseudo-wavelet power spectrum for a white
noise signal (see Sect. 4.2), analogously to its frequency
counterpart (see Sect. 7 of Part 1). The weighted smoothed
scalogram is derived from Eq. (32), in which the integrand is
weighted by the right-hand-side weight of Eq. (37), namely,

||Psmoothed(τ,a)|X〉||
2
= (46)

1
2γω0a

τ+γω0a∫
τ−γω0a

dτ ′
2tr(G2

τ ′ ,a
)

tr(Gτ ′ ,a )
2 ||
(

Psp{|t0〉,|t1〉,...,|tm〉,|Gτ ′ ,a ca 〉,|Gτ ′ ,a sa 〉}
−Psp{|t0〉,|t1〉,...,|tm〉}

)
|X〉||2.
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Appendix D provides further details on the practical im-
plementation of the bounds of integration. We recommend
the use of the weighted smoothed scalogram in most time–
frequency analyses under irregular sampling.

3.7 Cone of influence

When the wave packets |Gτ,aca〉 and |Gτ,asa〉 intersect the
borders of the time series, a part of their support can stand
after the last point of the time series, or before the first point
of the time series. Consequently, one has to remove two half-
cones from the area under analysis. From Eq. (25), the sup-
port of the wave packets is approximately equal to 2βω0a, so
that the excluded areas are given by

{τ,a} such that |τ − t1| ≤ βω0a and |τ − tN | ≤ βω0a, (47)

with β = 3 (conservative choice) or β =
√

2 (choice in Tor-
rence and Compo, 1998). We recommend the conservative
choice. When smoothing is performed, Eq. (47) becomes

{τ,a} such that (48)
|τ − t1| ≤ (β + γ )ω0a and |τ − tN | ≤ (β + γ )ω0a,

where γ controls the smoothing length; see Eqs. (32), (45)
and (46).

This has another implication: the maximal scale available
by the analysis is

amax =
tN − t1

2(β + γ )ω0
. (49)

3.8 Aliasing and Shannon–Nyquist exclusion zone
(SNEZ)

When probing the irregularly sampled time series with the
wavelet packet, it may happen that the period of the oscilla-
tion inside the packet, 2πa, is too low compared to the lo-
cal time step in the time series, therefore causing aliasing
issues according to the Shannon–Nyquist theorem, locally in
the time–scale plane. As stated in Part 1, this issue also hap-
pens with the WOSA periodogram. We adapt formulas (I,72),
(I,73) and (I,74) and define the local time step as

1tτ,a =max{1tGτ,a
,1tHτ,a

}, (50)

where

1tGτ,a
=

∑N
k=1Gτ,ak,k1tck

tr(Gτ,a)
,

1tHτ,a
=

∑N−1
k=1 Hτ,ak,k1tk

tr(Hτ,a)
, (51)

1tk = tk+1− tk, ∀k ∈ {1, . . .N − 1},

1tck =
tk+1− tk−1

2
, ∀k ∈ {2, . . .N − 1},

1tc1 = t2− t1,1tcN = tN − tN−1, (52)

and Hτ,a is a diagonal matrix with

Hτ,ak,k = exp

−
(
tk+tk+1

2 − τ
)2

2ω2
0a

2

 , k ∈ {1, . . .,N−1}. (53)

We then apply the Shannon–Nyquist theorem to this local
time step, namely:

Compute the scalogram at (τ,a) if a ≥ aSNEZ(τ ), (54)

where

aSNEZ(τ ) is the largest solution of a =
1tτ,a

π
. (55)

We call Shannon–Nyquist exclusion zone, the area in the
scalogram that does not satisfy Eq. (54) and which is there-
fore delimited by aSNEZ. Note that matrix Hτ,a is similar to
matrix Gτ,a , defined in Eq. (25), but with elements taken at
(tk+tk+1)/2 instead of tk . Quantity1tτ,a is equal to the max-
imum between the average weighted time step and the aver-
age weighted central time step.

We now justify Formula (50) with an example. Consider
the function X(t)= sin(2πt/0.01), sampled on an irregular
grid. This is drawn in Fig. 2a. The time step is represented in
Fig. 2b. These two figures show that the time series exhibits
intervals where it is more or less regularly sampled, sepa-
rated by large gaps. The weighted (unsmoothed) scalogram
is drawn in Fig. 3a. We remind the reader that the weighted
scalogram is supposed to estimate the local squared ampli-
tude in the time–frequency plane. Since X(t) has an ampli-
tude equal to 1, we expect that the maximal power of the
scalogram be equal to 1, along a scale corresponding to the
period of x, for all τ . Because of the large gaps in the time se-
ries, extended regions corrupted by aliasing occur in Fig. 3a,
resulting in a maximal power for the scalogram which is
much greater than 1. Figure 3b, c and d present the weighted
scalogram corrected by the SNEZ. In Fig. 3b the SNEZ is
computed with 1tτ,a =1tGτ,a

. We observe that it does a
good job of rejecting the areas where aliasing occur, although
it is desirable that the black areas peak on higher scales. In
Fig. 3c, the SNEZ is computed with 1tτ,a =1tHτ,a

. We ob-
serve that most of the aliasing-related areas are rejected, al-
though we would rather the black areas be wider. Finally, the
SNEZ computed with1tτ,a =max{1tGτ,a

,1tHτ,a
} is drawn

in Fig. 3d and we observe that it does a very satisfactory job
at rejecting the areas where aliasing occur.

The SNEZ is applied to all the analysis tools defined
above. When smoothing is to be applied, it is performed on
the areas outside of the SNEZ, since the scalogram is not
computed in the SNEZ. In the neighbourhood of the SNEZ,
adjustments of the smoothing procedure are therefore neces-
sary, as explained in Appendix D.
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scalogram corrected by the SNEZ. In Fig. 3b the SNEZ is computed with �t⌧,a = �tG⌧,a
. We observe that it does a good job

at rejecting the areas where aliasing occur, although it is desirable that the black areas peak at higher scales. In Fig. 3c, the

SNEZ is computed with �t⌧,a = �tH⌧,a . We observe that most of the aliasing-related areas are rejected, although we wish

wider black areas. Finally, the SNEZ computed with �t⌧,a = max{�tG⌧,a ,�tH⌧,a} is drawn on Fig. 3d and we observe that

it does a very satisfactory job at rejecting the areas where aliasing occur.5

The SNEZ is applied to all the analysis tools defined above. When smoothing is to be applied, it is performed on the areas

outside of the SNEZ, since the scalogram is not computed in the SNEZ. In the neighborhood of the SNEZ, adjustments of the

smoothing procedure are therefore necessary, as explained in appendix D.

(a) (b)

Figure 2. (a) The time series |Xi = sin(2⇡|ti/0.01), and (b) its time step, with the vertical axis in log-scale. The time vector |ti is taken from a real

paleoclimate time series (Giosan, 2017).

16

Figure 2. (a) The time series |X〉 = sin(2π |t〉/0.01) and (b) its time step, with the vertical axis in log-scale. The time vector |t〉 is taken from
a real palaeoclimate time series (Liviu Giosan, WHOI, personal communication, 2017).

3.9 From the scale to the period

Scale-to-period conversion is performed in the continuous
limit, with Eq. (18). The first case of Eq. (18), with c(a)∼
1/a, corresponds to estimators of the amplitude, and is then
used for scale-to-period conversion with the amplitude scalo-
gram (all the formulas of Sect. 3.5) and for the weighted
smoothed scalogram, Eq. (46). The second case of Eq. (18),
with c(a)∼ 1/

√
a, is used for scale-to-period conversion

with the unweighted scalogram, that is, the formulas appear-
ing in Sect. 3.2, 3.3 and 3.4.

3.10 Refining the Shannon–Nyquist exclusion zone

As illustrated in Fig. 4, the Shannon–Nyquist exclusion zone
may not to be sufficient to avoid all the patches due to alias-
ing, because of the correlations between neighbouring scales
in the scalogram. We therefore extend the Shannon–Nyquist
exclusion zone by considering the continuous limit case
for the simple periodic signal x(t)= exp(i2πt/TSNEZ(τ )),
where TSNEZ(τ ) is the period at the border of the SNEZ,
determined by Eqs. (55) and (18). Its scalogram is given in
Eq. (17). In order to make the correspondence with all the
above formulas, three cases are considered.

1. c(a)∼ 1/a: in this case, we have |S(τ,a)|2 ∼
exp(−ω2

0(2πa/TSNEZ(τ )−1)2), and the standard devia-
tion for the scale is then σa,1(τ )= TSNEZ(τ )/2

√
2πω0.

The border of the extended Shannon–Nyquist exclusion
zone at time τ is therefore on scale aSNEZ(τ )+βσa,1(τ ),
where β is a coefficient estimating the half-support of
Gaussian-shaped functions (it is defined in Sect. 3.7).

2. c(a)∼ 1/a and work with |S(τ,a)|: in this case, we
have |S(τ,a)| ∼ exp(−ω2

0(2πa/TSNEZ(τ )−1)2/2), and

the standard deviation for the scale is then σa,2(τ )=
TSNEZ(τ )/2πω0. The border of the extended Shannon–
Nyquist exclusion zone at time τ is therefore on scale
aSNEZ(τ )+βσa,2(τ ).

3. c(a)∼ 1/
√
a: in this case, we have |S(τ,a)|2 ∼

a exp(−ω2
0(2πa/TSNEZ(τ )− 1)2). We know from

Eq. (18) that the scalogram is at its maximum on the

scale aSNEZ(τ )= TSNEZ(τ )(ω0+

√
ω2

0 + 2)/4πω0.
The pseudo-standard deviation is computed such that
a exp(−ω2

0(2πa/TSNEZ(τ )− 1)2) decreases from its
maximum by the same percentage as in case 1, namely,
βσa,3(τ ) is equal to the largest of the two solutions of

a exp
(
−ω2

0(2πa/TSNEZ(τ )− 1)2
)
=

aSNEZ(τ )exp
(
−ω2

0(2πaSNEZ(τ )/TSNEZ(τ )− 1)2
)

exp
(
−β2/2

)
,

in which the unknown is a. The border of the extended
Shannon–Nyquist exclusion zone at time τ is therefore
on scale a = aSNEZ(τ )+βσa,3(τ ).

Case 1 is used with formulas giving the squared amplitude
Ê2
τ,a in Sect. 3.5 and with the weighted smoothed scalo-

gram, Eq. (46). The (unsquared) amplitude Êτ,a can also be
of interest, and case 2 is therefore used. Case 3 is used with
formulas arising in Sect. 3.2, 3.3 and 3.4. Finally, note that
the refinement of the SNEZ is performed after the smooth-
ing procedure, because an extension of the SNEZ may result
from the smoothing, as explained in Appendix D.
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(a) (b)

(c) (d)

Figure 3. Weigthed (unsmoothed) scalogram of the time series presented on Fig. 2a. (a) No correction for aliasing. (b) Corrected with �t⌧,a = �tG⌧,a . (c)

Corrected with �t⌧,a = �tH⌧,a . (d) Corrected with �t⌧,a = max{�tG⌧,a ,�tH⌧,a}.

3.9 From the scale to the period

Scale to period conversion is performed in the continuous limit, with Eq. (18). The first case of Eq. (18), with c(a)⇠ 1/a,

corresponds to estimators of the amplitude, and is then used for scale to period conversion with the amplitude scalogram (all

the formulas of Sect. 3.5) and for the weighted smoothed scalogram, Eq. (46). The second case of Eq. (18), with c(a)⇠ 1/
p

a,

is used for scale to period conversion with the unweighted scalogram, that is the formulas appearing in Sect. 3.2, 3.3 and 3.4.5

17

n

Figure 3. Weighted (unsmoothed) scalogram of the time series presented in Fig. 2a. (a) No correction for aliasing. (b) Corrected with
1tτ,a =1tGτ,a

. (c) Corrected with 1tτ,a =1tHτ,a
. (d) Corrected with 1tτ,a =max{1tGτ,a

,1tHτ,a
}.

3.11 Discretising τ and a

With regularly sampled data, the discretised variable τ is usu-
ally equal to |t〉 (like in Torrence and Compo, 1998), or a
subset of |t〉 with regularly spaced elements. For irregularly
spaced time series, we opt for the same type of grid as in the
regularly sampled case, i.e. a linear regular grid, namely

τk = τ0+ k1τ, k ∈ {0, . . .,K},
with τ0 ≥ t1 and τK ≤ tN . (56)

The scales are commonly discretised as fractional powers of
two (Torrence and Compo, 1998), namely

aj = amin2jδj , j = 0, . . .,J, (57)

where

J = log2 (amax/amin)/δj. (58)

Here, amin is the minimum over τ of aSNEZ (defined in
Eq. 55), and amax is defined in Eq. (49). Discretisation as
a power law comes from the geometry of the wavelet trans-
form, and is justified in Appendix C.

The integrals in Eqs. (32), (45) and (46) are discretised
with the rectangle method. In particular, the discretisation of
the integrals in Eqs. (32) and (46) allows these formulas to
be written as finite-size matrices. To this end, we apply a
Gram–Schmidt orthonormalisation to the orthogonal projec-
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(a) (b)

(c) (d)

Figure 4. Scalogram of the time series |Xi = sin(2⇡|ti/10), where |ti has a piecewise constant time step. From t = 0 to t = 200, �t = 4. From t = 200

to t = 400, �t = 3. From t = 400 to t = 600, �t = 2. (a) Weighted (unsmoothed) scalogram. The black area is the SNEZ. (b) Same as (a) with the addition

of the refinement of the SNEZ, which is the shaded area on the top of the SNEZ. (c) Amplitude scalogram (unsmoothed). The black area is the SNEZ. (d)

Same as (c) with the addition of refinement of the SNEZ, which is the shaded area on the top of the SNEZ. In the 4 panels, the bounds of the color scale are

the extrema of the scalogram over the non-shaded area. Thanks to the refinement of the SNEZ, the upper bound of the color scale is close to 1, which is the

value of the squared amplitude of the signal |Xi.

3.11 Discretizing ⌧ and a

With regularly sampled data, the discretized variable ⌧ is usually equal to |ti (like in Torrence and Compo, 1998), or a subset

of |ti with regularly spaced elements. For irregularly spaced time series, we opt for the same type of grid as in the regularly

19

w

w

Figure 4. Scalogram of the time series |X〉 = sin(2π |t〉/10), where |t〉 has a piecewise constant time step. From t = 0 to t = 200, 1t = 4.
From t = 200 to t = 400, 1t = 3. From t = 400 to t = 600, 1t = 2. (a) Weighted (unsmoothed) scalogram. The black area is the SNEZ.
(b) Same as panel (a) with the addition of the refinement of the SNEZ, which is the shaded area on the top of the SNEZ. (c) Amplitude
scalogram (unsmoothed). The black area is the SNEZ. (d) Same as panel (c) with the addition of refinement of the SNEZ, which is the
shaded area on the top of the SNEZ. In the four panels, the bounds of the colour scale are the extrema of the scalogram over the non-shaded
area. Thanks to the refinement of the SNEZ, the upper bound of the colour scale is close to 1, which is the value of the squared amplitude of
the signal |X〉.

tions, like in Eq. (I,67). This gives

||Psmoothed(τ,a)|X〉||
2
= 〈X|Mτ,aM′τ,a|X〉, (59)

which is the analogue of Eq. (I,68). Mτ,a is a matrix of size
(N,2ncol(τ,a)), ncol(τ,a)≥ 1, where ncol is a non-trivial
function depending on the scale and on the closeness of (τ,a)
with the SNEZ and with edges of the time–frequency plane.

4 Significance testing with the scalogram

4.1 Hypothesis testing

We test for the presence of periodic components, locally in
the time–frequency plane. Significance testing is mathemat-
ically expressed as a hypothesis testing. Taking our model,
Eq. (22), the null hypothesis is

H0 : Aτ,a = Bτ,a = 0. (60)
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Therefore, |X〉 = |Trend〉+ |Noise〉. The alternative hypoth-
esis is

H1 : Aτ,a and Bτ,a are not both zero. (61)

The decision of accepting or rejecting the null hypothesis
is based on the scalogram (Eq. 46), independently for each
couple (τ,a) (this is called pointwise testing). Concretely,
for each couple (τ,a), we compute the distribution of the
scalogram under the null hypothesis, and then see if the data
scalogram at (τ,a) is above or below a given percentile of
that distribution. The percentile is called level of confidence.
If the data scalogram is above the Xth percentile of the refer-
ence distribution, we reject the null hypothesis with X% of
confidence. The level of significance is equal to (100−X)%,
e.g. a 95 % confidence level is equivalent to a 5 % signifi-
cance level.

To perform significance testing, we thus need

1. to estimate the parameters of the process under the null
hypothesis (this is studied in Sect. 5.2 of Part 1);

2. to estimate the distribution of the scalogram under the
null hypothesis (this is studied in Sect. 4.2 below).

Finally, we mention that, for regularly sampled time series,
the pointwise significance test can be supplemented with an
area-wise significance test, which takes into account the cor-
relations between neighbouring points in the time–frequency
plane. This is introduced in Maraun and Kurths (2004) and
studied in detail in Maraun et al. (2007). Applying this
method to irregularly sampled series is way beyond the scope
of this work, since the correlations between neighbouring
points in the time–frequency plane are highly irregular.

4.2 Estimation of the distribution of the scalogram
under the null hypothesis

The results obtained for the periodogram in Sect. 5.3 of Part 1
are valid for the scalogram, with minor changes that we detail
below.

1. Monte Carlo approach: the same procedure as in
Part 1 is applied to the (weighted) smoothed scalogram,
Eq. (32) or (46). We can thus estimate the confidence
levels for the (weighted) smoothed scalogram taking
into account the uncertainty in the parameters of the
background noise.

2. Analytical approach (with a unique set of CARMA pa-
rameters):

– Theorem 1 of Part 1 can be applied to the
(weighted) smoothed scalogram, as follows.

Theorem 1. The (weighted) smoothed scalogram,
defined in Eq. (59), under the null hypothesis (60),

is9

||Psmoothed(τ,a)|X〉||
2 d
=

2ncol(τ,a)∑
k=1

λk(τ,a)χ
2
1k , (62)

where |X〉 =
∑m
k=0γk|t

k
〉+K|Z〉 and K is the

CARMA matrix defined in Eq. (I,20) or (I,38).
The χ2

1k distributions are iid, and λ1(τ,a),
..., λ2ncol(τ,a)(τ,a) are the eigenvalues of
M′τ,aKK′Mτ,a and are non-negative. Matrix
Mτ,a is defined in Eq. (59).

– The pseudo-wavelet power spectrum, ŴPS, is
the analogue of the pseudo-spectrum defined in
Eq. (I,92). It is defined as the expected value of
the (weighted) smoothed scalogram distribution,
namely

ŴPS(τ,a)=
2ncol(τ,a)∑
k=1

λk(τ,a)

= tr
(
M′τ,aKK′Mτ,a

)
. (63)

– For a Gaussian white noise background with vari-
ance σ 2, the unweighted pseudo-wavelet power
spectrum is flat, and is equal to 2σ 2, for all (τ,a).
Moreover, if the scalogram is not smoothed, it is ex-
actly chi-square distributed with 2 degrees of free-
dom:

||

(
Psp{|t0〉,|t1〉,...,|tm〉,|Gτ,aca 〉,|Gτ,a sa 〉}

−Psp{|t0〉,|t1〉,...,|tm〉}

)
σ |Z〉||2

d
= σ 2χ2

2 , (64)

where |Z〉 is a standard Gaussian white noise.

– The variance of the distribution of the (weighted)
smoothed scalogram at (τ,a) is equal to
2||M′τ,aKK′Mτ,a||

2
F , where || · ||F is the Frobenius

norm.

– We approximate the linear combination of the in-
dependent chi-square distributions, appearing in
Eq. (62), by a gamma-polynomial distribution con-
serving its first d moments, based on the theory de-
veloped in Provost et al. (2009). The formulas are
given in Sect. 5.3.3 of Part 1.
We observe, however, that the convergence of the
percentiles (as the number of conserved moments
grows) strongly depends on the smoothing coeffi-
cient γ , defined in Eqs. (32) and (46). As a gen-
eral rule, the larger γ is, the faster the convergence.
Moreover, it turns out that the gamma-polynomial

9The symbol d= means “is equal in distribution”.
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(a) (b)

Figure 5. Analytical confidence levels in function of the number of conserved moments, at six particular couples (⌧,a), for the scalogram of the time series

presented in Sect. 7. Parameter � is equal to 0.5. (a) 95th percentile. (b) 99.9th percentile. Slow convergence as well as numerical instabilities (spurious peaks)

at high numbers of conserved moments are observed. Convergence cannot therefore be numerically guaranteed.

5 Filtering with the amplitude scalogram

5.1 Band filtering

From Sect. 3.5.3, Eq. (43) gives bA⌧,a and bB⌧,a. We can therefore reconstruct the signal bA⌧,a|cai+ bB⌧,a|sai over the whole

time-scale plane, i.e. for all (⌧,a). Band filtering is performed by averaging the reconstructed signal between scales ajmin and

ajmax , namely5

Xfilt(⌧) =
1

jmax � jmin + 1

jmaxX

j=jmin

bA⌧,aj
|caj

i+ bB⌧,aj
|saj

i, (65)

where the discretized scale is defined in Eq. (57). Such a filtering procedure is a generalization of the scale-averaged wavelet

power of Torrence and Compo (1998) which deals with trendless regularly sampled signals. Note that we use the formulas for

which there is no smoothing. Indeed, the smoothing procedure in Eq. (45) does not give access to bA⌧,a and bB⌧,a (only the sum

of their squared values is available). An example of band filtering is shown in Fig. 9 and 10.10

23

No. of conserved moments No. of conserved momentsNo. of conserved moments No. of conserved moments

Figure 5. Analytical confidence levels in function of the number of conserved moments, at six particular couples (τ,a), for the scalogram
of the time series presented in Sect. 7. Parameter γ is equal to 0.5. (a) 95th percentile. (b) 99.9th percentile. Slow convergence as well as
numerical instabilities (spurious peaks) at high numbers of conserved moments are observed. Convergence cannot therefore be numerically
guaranteed.

approximation becomes numerically unstable at
large numbers of conserved moments, because the
matrix in Eq. (I,100) becomes singular. Conse-
quently, for relatively small values of γ , conver-
gence cannot be numerically guaranteed. This is
illustrated in Fig. 5. In such cases, a simple 2-
moment approximation is therefore a reasonable
choice since it is always numerically stable, it is
much quicker than with higher numbers of con-
served moments from a computational point of
view, and it provides a satisfactory approximation.

3. A comparison between the computing times of the
Monte Carlo approach and the analytical approach is
presented in Appendix G.

5 Filtering with the amplitude scalogram

5.1 Band filtering

From Sect. 3.5.3, Eq. (43) gives Âτ,a and B̂τ,a . We can there-
fore reconstruct the signal Âτ,a|ca〉+B̂τ,a|sa〉 over the whole
time–scale plane, i.e. for all (τ,a). Band filtering is per-
formed by averaging the reconstructed signal between scales

ajmin and ajmax , namely

Xfilt(τ )=
1

jmax− jmin+ 1

jmax∑
j=jmin

Âτ,aj |caj 〉+ B̂τ,aj |saj 〉, (65)

where the discretised scale is defined in Eq. (57). Such a
filtering procedure is a generalisation of the scale-averaged
wavelet power of Torrence and Compo (1998) which deals
with trendless regularly sampled signals. Note that we use
the formulas for which there is no smoothing. Indeed, the
smoothing procedure in Eq. (45) does not give access to Âτ,a
and B̂τ,a (only the sum of their squared values is available).
An example of band filtering is shown in Figs. 9 and 10.

5.2 Ridge filtering

Consider a signal |X〉 = E cos(ω|t〉+φ). We can easily re-
construct the signal from the estimated amplitudes Âτ,a and
B̂τ,a , given by Eq. (43), taken at the maximum of the scalo-
gram, in this case at a = 1/ω. More generally, we can re-
construct more complex signals relying on the theory of
the amplitude ridges, developed for continuous-time signals
(Sect. 2.7) and which can approximately be applied to irreg-
ularly sampled time series. An example of ridge filtering is
shown in Figs. 9 and 10.
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imation (see the discussion in Sect. 4.2), a fixed-length smoothing per scale (see appendix D), � = 3 (half-support of a standard

Gaussian function exp(�x2/2)), and �j = 0.05 (coefficient for the scale resolution).

7.3 Filtering

As explained in Sect. 5, band and ridge filtering are performed on the unsmoothed amplitude scalogram. This is illustrated on

Fig. 9, with a filtering band in the interval [35,45] kyr and with the ridges. From the whole set of the ridges, we select those in5

the band [35,45] kyr, in order to make a comparison with the band filtering. Band and ridge filtered signals are shown in Fig.

10. We can see that the amplitude modulations in Fig. 10a and 10b are consistent. Compared to band filtering, the ridge filtering

method has the advantage of representing the signal for which the amplitude scalogram is locally maximal, and also allows

to reconstruct the time-varying amplitude of the filtered signal (in red on Fig. 10b). The drawback is that it rarely delivers a

continuous reconstruction with climate data.10

(a) (b)

Figure 6. (a) The time series and its 7th degree polynomial trend. (b) The age step, [tk � tk�1] 8k 2 2, ...,N , and its distribution.

25

Figure 6. (a) The time series and its 7th-degree polynomial trend. (b) The age step, [tk − tk−1], ∀k ∈ 2, . . .,N , and its distribution.

6 The global scalogram

Analogously to the global wavelet spectrum of Torrence and
Compo (1998) for trendless regularly sampled time series,
we define here the global scalogram as the scalogram aver-
aged over time. Technically, it is nothing but the smoothed
scalogram (Eqs. 32, 45 or 46) with integration over the whole
interval of the analysis time τ . We can write the discretised
global scalogram under a similar matrix form as in Eq. (59),
and find the confidence levels according to Sect. 4. Com-
pared to the periodogram defined in Part 1, which has a fixed
bandwidth, the global scalogram has a varying bandwidth
with the frequency. From Fig. C1 of Appendix C, we deduce
that the global scalogram exhibits a frequency resolution that
gets better when the frequency decreases. Examples of global
scalograms are given in Sect. 7.

7 Application on palaeoceanographic data

7.1 Preliminary analysis

The time series we use to illustrate the theoretical results is
the benthic foraminiferal δ18O record from Jian et al. (2003),
which holds 608 data points with distinct ages and covers the
last 6 million years. The choice of a CARMA(1,0) process
as the background stationary noise, as well as the choice of
m= 7 for the degree of the polynomial trend, are justified
in Sect. 9 of Part 1, in which the same data set is used as
an example of frequency analysis. The time series, its trend
and its time step are drawn in Fig. 6. We remind the reader
that the time series is not detrended before computing the
scalogram of the data, but it is detrended before estimating
the confidence levels.

7.2 Time–frequency analysis

The weighted smoothed scalogram (Sect. 3.6) and its 95 %
analytical and MCMC confidence levels are presented in
Fig. 7 with parameter ω0 = 5.5, and in Fig. 8 with param-
eter ω0 = 15. As explained in Sect. 2, increasing ω0 results
in a better frequency resolution and a worse time resolution.
In our example, the scalogram with ω0 = 15 exhibits more
clearly the period band around 40 kyr and the changes in am-
plitude along that band. The form of the SNEZ, which is the
black region at the bottom in Figs. 7 and 8, follows from the
sampling of the time series presented in Fig. 6b.

The parameters are γ = 0.5 (smoothing coefficient), 2 is
the number of conserved moments in the gamma-polynomial
approximation (see the discussion in Sect. 4.2), a fixed-
length smoothing per scale (see Appendix D), β = 3 (half-
support of a standard Gaussian function exp(−x2/2)) and
δj = 0.05 (coefficient for the scale resolution).

7.3 Filtering

As explained in Sect. 5, band and ridge filtering are per-
formed on the unsmoothed amplitude scalogram. This is il-
lustrated in Fig. 9, with a filtering band in the interval [35,
45] kyr and with the ridges. From the whole set of the ridges,
we select those in the band [35, 45] kyr in order to make a
comparison with the band filtering. Band and ridge filtered
signals are shown in Fig. 10. We can see that the amplitude
modulations in Fig. 10a and b are consistent. Compared to
band filtering, the ridge filtering method has the advantage of
representing the signal for which the amplitude scalogram is
locally maximal, and also allows the time-varying amplitude
of the filtered signal to be reconstructed (in red in Fig. 10b).
The drawback is that it rarely delivers a continuous recon-
struction with climate data.
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Wavelet scalogram & 95.0 % confidence levels - w0 = 5.5

Figure 7. Weighted smoothed scalogram (left) and its global scalogram (right) with ω0 = 5.5. The 95 % analytical confidence levels (green)
and 95 % MCMC confidence levels (magenta), against a red noise background, are also drawn. Note that the green and magenta contours
are almost superposed. The two lateral shaded areas are the half-cones of influence, the bottom black area is the SNEZ, and the shaded area
above the SNEZ is the refinement of the SNEZ. There are also two lateral black areas, where the scalogram is not computed, because of the
fixed-length smoothing per scale. The bounds of the colour scale are the extrema of the scalogram over the non-shaded area. As we work
with the weighted scalogram, the power is an estimation of the local squared amplitude. Dashed lines at usual palaeoclimate periods are also
drawn.
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Figure 8. Weighted smoothed scalogram (left) and its global scalogram (right) with ω0 = 15. The 95 % analytical confidence levels (green)
and 95 % MCMC confidence levels (magenta), against a red noise background, are also drawn. Note that the green and magenta contours are
almost superposed.

8 WAVEPAL Python package

WAVEPAL is a package, written in Python 2.X, that per-
forms frequency and time–frequency analyses of irregularly
sampled time series, significance testing against a stationary

Gaussian CARMA(p,q) process, and filtering. Frequency
analysis is based on the theory developed in Part 1, and time–
frequency analysis relies on the theory developed in this
article. It is available at https://github.com/guillaumelenoir/
WAVEPAL.

Nonlin. Processes Geophys., 25, 175–200, 2018 www.nonlin-processes-geophys.net/25/175/2018/

https://github.com/guillaumelenoir/WAVEPAL
https://github.com/guillaumelenoir/WAVEPAL


G. Lenoir and M. Crucifix: A general theory on time–frequency analysis of irregularly sampled time series 191

Figure 9. The unsmoothed estimated amplitude (which is the square root of the amplitude scalogram, Eq. 44), jointly with the filtering band
in the interval [35, 45] kyr (shaded). Black and white curves are the ridges. They go through the local maxima of the amplitude scalogram.
The white ones are the ridges in the band [35, 45] kyr. Parameters are ω0 = 15, β = 3 and δj = 0.01.

(a) (b)

Figure 10. Filtered signal in the band [35,45] kyr. (a) Band filtering. (b) Ridge filtering. The red curve is the amplitude of the filtered signal, which is only

available with ridge filtering.

8 WAVEPAL Python package

WAVEPAL is a package, written in Python 2.X, that performs frequency and time-frequency analyses of irregularly sampled

time series, significance testing against a stationary Gaussian CARMA(p,q) process, and filtering. Frequency analysis is based

on the theory developed in paper I, and time-frequency analysis relies on the theory developed in this article. It is available at

https://github.com/guillaumelenoir/WAVEPAL.5

9 Conclusions

We defined the scalogram as an extension of the generalized Lomb-Scargle periodgram developed in paper I. This analysis tool

is well-suited for irregularly sampled time series which can be modeled as a locally periodic component in the time-frequency

plane, plus a polynomial trend, plus a Gaussian CARMA stochastic process. In the particular case of trendless regularly

sampled times series, we shown that the unsmoothed scalogram gives the same results as with the traditional algorithms10

such as in Torrence and Compo (1998). A smoothing procedure, by averaging over neighboring points in time, was then

applied to the scalogram in order to reduce its variance. Besides, we derived estimators of the amplitude of the locally periodic

component, based on the general results of paper I, and proposed an approximate formula linking the scalogram and the squared

amplitude. The latter result is at the basis of the weighted smoothed scalogram, which is the analysis tool that we recommend

for most time-frequency analyses. We then shown that local aliasing issues may occur in the analysis tools previously derived,15

implying the delimitation of a forbidden area for the analyses, called the Shannon-Nyquist exclusion zone. Moreover, a test

of significance for the scalogram was designed, similarly to its counterpart for the frequency analysis developed in paper I.

Finally, the classical filtering procedures, namely band and ridge filtering, were made available for use with our operator of the

estimated amplitude.

28

Figure 10. Filtered signal in the band [35, 45] kyr. (a) Band filtering. (b) Ridge filtering. The red curve is the amplitude of the filtered signal,
which is only available with ridge filtering.

9 Conclusions

We defined the scalogram as an extension of the generalised
Lomb–Scargle periodogram developed in Part 1. This anal-
ysis tool is well suited for irregularly sampled time series
which can be modelled as a locally periodic component in the
time–frequency plane, plus a polynomial trend, plus a Gaus-
sian CARMA stochastic process. In the particular case of
trendless regularly sampled times series, we showed that the
unsmoothed scalogram gives the same results as with the tra-
ditional algorithms such as in Torrence and Compo (1998). A
smoothing procedure, by averaging over neighbouring points
in time, was then applied to the scalogram in order to re-
duce its variance. Besides, we derived estimators of the am-

plitude of the locally periodic component, based on the gen-
eral results of Part 1, and proposed an approximate formula
linking the scalogram and the squared amplitude. The latter
result is at the basis of the weighted smoothed scalogram,
which is the analysis tool that we recommend for most time–
frequency analyses. We then showed that local aliasing is-
sues may occur in the analysis tools previously derived, im-
plying the delimitation of a forbidden area for the analyses,
called the Shannon–Nyquist exclusion zone. Moreover, a test
of significance for the scalogram was designed, similarly to
its counterpart for the frequency analysis developed in Part 1.
Finally, the classical filtering procedures, namely band and
ridge filtering, were made available for use with our operator
of the estimated amplitude.
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Code availability. The Python code generating the figures of this
article is available in the Supplement.
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Appendix A: Fourier analysis of functions

L2(R) is the space of measurable functions on R with finite
energy:

||f ||2L2 =

+∞∫
−∞

dt |f (t)|2 <∞. (A1)

This defines the squared norm for such functions, that we
denote simply by ||f ||2 in Sect. 2. We provide the L2 space
with the usual inner product:

〈f |g〉L2 =

+∞∫
−∞

dtf (t)g(t), (A2)

which makes it a Hilbert space; f (t) denotes the complex
conjugate of f (t), and 〈f |g〉L2 is denoted by 〈f |g〉 in Sect. 2.

Strictly speaking, the Fourier transform and the convolu-
tion product cannot be defined on L2(R). We therefore re-
strict to the Schwartz space, S(R), which is a subspace of
L2(R), and on which the Fourier transform and the convolu-
tion product can be defined. The Schwartz space is defined
as follows:

f ∈ S⇐⇒


f ∈ C∞,

∀m,j ∈ N : |t |m|f (j)(t)| → 0
when |t | →∞, i.e. f and all its
derivatives are rapidly decreasing.

(A3)

The Fourier transform of f ∈ S(R) is defined by

f̂ (ω)=
1
√

2π

+∞∫
−∞

dtf (t)exp(−iωt), (A4)

and f̂ is also in S(R). The inverse Fourier transform is

f (t)=
1
√

2π

+∞∫
−∞

dωf̂ (ω)exp(iωt). (A5)

Some properties of the Fourier transform are listed below.

– Parseval–Plancherel identities: 〈f |g〉 = 〈f̂ |̂g〉 and
||f ||2 = ||f̂ ||2.

– Convolution theorem: [f ? g]̂ (ω)=
√

2πf̂ (ω)ĝ(ω),
where the convolution product between f and g is
(f ? g)(t)=

∫
+∞

−∞
dt ′f (t − t ′)g(t ′).

– Translation–modulation: the Fourier transform of f (t−
b) is exp(−iωb)f̂ (ω).

– Dilation: the Fourier transform of f (at), a 6= 0, is
1
|a|
f̂ (ω/a).

Appendix B: Fourier uncertainty principle for the
Morlet wavelet

The Fourier uncertainty principle states that the temporal
variance and the frequency variance of a function f ∈ S(R)
satisfy

σ 2
t σ

2
ω ≥

1
4
, (B1)

where

σ 2
t =

1
√

2π ||f ||2

+∞∫
−∞

dt (t − u)2|f (t)|2, (B2)

and

σ 2
ω =

1
√

2π ||f ||2

+∞∫
−∞

dt (ω− ξ)2|f̂ (ω)|2. (B3)

Here, µ and ξ are the average time and average frequency
and are defined with the same densities as for the variances.
For the Morlet wavelet, the densities are |ψ]a(t)|2 (from

Eq. 13) and |ψ̂]a(ω)|2 (from Eq. 16), up to a normalising
multiplicative factor. As they are Gaussian functions, their
variances are trivial, and we have

σ 2
t σ

2
ω =

ω2
0a

2

2
1

2ω2
0a

2
=

1
4
. (B4)

This is equal to the lower bound of the inequality, as expected
for Gaussian functions (see Mallat, 2009, p. 43, for additional
details10). It is in that sense that the Morlet wavelet is said to
be ideally localised.

Appendix C: Uncertainty boxes and scale discretisation

C1 Time–frequency resolution and uncertainty boxes

We saw in Appendix B that the standard deviations of the
continuous-time density |ψ]a(t)|2 and continuous-frequency

density |ψ̂]a(ω)|2 are σt = ω0a/
√

2 and σω = 1/
√

2ω0a

respectively. Moreover, the centre angular frequency of

|ψ̂
]
a(ω)|

2 is ω = 1/a, from Eq. (16). With all these coeffi-
cients and Eqs. (3) and (5), we can draw rectangles, that we
call uncertainty boxes (Mallat, 2009, p. 10911), in the time–
frequency plane indicating the energy spread around each
couple (t,ω), or equivalently, the time–frequency resolution
at each couple (t,ω). This is illustrated in Fig. C1. Note that
their area is equal to σtσω = 1/2 and is therefore constant.

10In that book, the Fourier uncertainty principle is called Heisen-
berg uncertainty theorem, but we will not use this misattribution in
a non-quantum context.

11In that book, the author calls them Heisenberg boxes, but as
previously mentioned, this is a misattribution in a non-quantum con-
text.
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Figure C1. Uncertainty boxes for the Morlet wavelet, with α =
ω0/
√

2 and β = 1/
√

2ω0.

C2 Scale discretisation

Scale discretisation is naturally based on the geometry of the
boxes. We can, for example, require that the frequency com-
ponent of the centre of mass of the box corresponding to
scale aj be at the frequency of the border of the box cor-
responding to scale aj+1. This is illustrated in Fig. C2. We
obtain

1
aj
=

1
aj+1

+
β

2aj+1
, (C1)

where β is defined in Fig. C1, giving

aj+1 =

(
2+β

2

)
aj , (C2)

and by recurrence,

aj+1 =

(
2+β

2

)j
a1, j ∈ N. (C3)

Multiplying β by a positive factor, γ , allows to control the
density of the discretised scales. With variable change δj =
log2[(2+βγ )/2], we obtain

aj+1 = 2jδja1, δj > 0, j ∈ N. (C4)

Appendix D: Smoothing the (amplitude) scalogram:
technical details

In the formulas of the smoothed (amplitude) scalogram,
Eqs. (32), (45) and (46), the integration is in principle per-
formed over the interval [τ − γω0a,τ + γω0a]. When this
interval intersects the edges of the time–frequency plane or
the SNEZ, we are no longer able to integrate over the full
interval. Two choices are then possible.

Figure C2. Example of rule for the discretisation of scales taking
into account the geometry of the uncertainty boxes. β = 1/

√
2ω0 >

0.

1. Keep the length of integration equal to 2γω0a, and
therefore exclude from the analysis some areas of the
time–frequency plane. This results in two excluded
zones at the time borders of the scalogram and in an
extension of the SNEZ.

2. Shorten the interval of integration in order to not ex-
clude from the analysis any extra region of the time–
frequency plane.

Both options are available in WAVEPAL and we recommend
the first one in order to keep a consistent degree of smoothing
at each point (τ,a) in the time–scale plane.

Appendix E: Other studies on the scalogram for
irregularly sampled time series

E1 Introduction

We review the only two rigorous studies that we have found
in the literature about the estimation of the scalogram for
irregularly sampled time series. Like our theory, they are
based on the Lomb–Scargle periodogram, and define a kind
of scalogram of the CWT for the Morlet mother wavelet.
However, these theories are too restrictive to have an inter-
est in geophysical applications.

E2 Foster’s theory

E2.1 Introduction

In this section, we derive and comment on the formulas pub-
lished in Foster (1996c), and based on developments pub-
lished in Foster (1996a, b). Foster’s theory is restricted to the
case of the unsmoothed scalogram applied to signals with
an additive Gaussian white noise and a piecewise trend for
which the shape is the envelope of the Morlet wavelet. It also
defines something similar to our amplitude scalogram and
generalises the F periodogram of Part 1. We show that some
of its formulas can be deduced from our general theory Foster
(see 1996c, for the original derivation of the formulas, which
is rather different from our approach). Foster’s formulas are
available for use in a Fortran code provided by the American
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Association of Variable Star Observers (AAVSO); see https:
//www.aavso.org/sites/default/files/software/wwz.tar.gz.

E2.2 Foster’s approximation and weighted inner
products

Let us start with the approximation made in Foster (1996b)
and used in Foster (1996c). Define U as equal to a full rank
real matrix, whose columns are the vectors generating the
vector space on which we project the data vector |X〉, the
latter belonging to RN . Define G as equal to a real diago-
nal square matrix of size N with positive elements. Foster’s
approximation (Foster, 1996b, Eq. 7.9) writes12

U′G2U≈
tr(G2)

tr(G)
U′GU. (E1)

Note that, when U is a 2-column matrix holding a cosine
vector and a sine vector, the above approximation can also
be obtained from Eq. (I,127). The orthogonal projection on
the span of GU thus becomes

Psp{GU} =GU(U′G2U)−1U′G

≈
tr(G)
tr(G2)

GU(U′GU)−1U′G, (E2)

and, for any pair of vectors |Y 〉 and |W 〉 in RN , we have

〈Y |Psp{GU}|W 〉 ≈Neff
〈Y |GU
tr(G)

(U′GU)−1tr(G)
U′G|W 〉

tr(G)
, (E3)

where Neff =
tr(G)2
tr(G2)

is defined in Foster (1996c, Eq. 7.7)
and called the effective number of data points. We
can actually rewrite the right-hand side of Eq. (E3) as
Neff〈Y |Psp{U}|W 〉Weighted, where the weighted inner product
is defined by:

〈Y |W 〉Weighted =
〈Y |G|W 〉

tr(G)
, (E4)

for any |Y 〉 and |W 〉 in RN . The term 〈·| · 〉Weighted satisfies
the requirements of an inner product since the elements of
G are positive (see Brockwell and Davis, 1991, p. 43). Fos-
ter’s theory is developed in a vector space provided with this
weighted inner product.

E2.3 WWT

Now, we derive Foster’s scalogram from our theory. The di-
agonal elements of the weight matrix G are as follows (Fos-
ter, 1996c, Eq. 5-3):

Gτ,ωkk = exp
(
−cω2(tk − τ)

2
)
. (E5)

12In Foster (1996b), the author works with tensor notations, so
that the equivalence is not direct.

Correspondence with our weight matrix, defined in Eq. (25),
is performed with the variable changes ω = 1/a and c =

1/2ω2
0. Next, consider the formula of the unsmoothed scalo-

gram, Eq. (31), with a = 1/ω, and transformed to accommo-
date for a trend given by |Gτ,ωt

0
〉. This results in

||Psp{|Gτ,ω t0〉,|Gτ,ωcω〉,|Gτ,ωsω〉}
|X〉||2− ||Psp{|Gτ,ω t0〉}

|X〉||2. (E6)

We then make use of the approximation of Eq. (E2) with
U= [|t0〉 |cω〉 |sω〉] for the first projection and U= |t0〉 for
the second projection, resulting in the following formula:

Neff

(
||Psp{|t0〉,|cω〉,|sω〉}|X〉||

2
Weighted− ||Psp{|t0〉}|X〉||

2
Weighted

)
, (E7)

for which we now work in a vector space provided with the
weighted inner product. If |X〉 is a zero-mean Gaussian white
noise, Formula (E6) follows exactly a chi-square distribution
with 2 degrees of freedom multiplied by the variance of the
white noise, namely σ 2χ2

2 . Consequently, under the null hy-
pothesis that the process is a Gaussian white noise, the fol-
lowing expression,

WWT= (E8)
Neff

2σ 2

(
||Psp{|t0〉,|cω〉,|sω〉}|X〉||

2
Weighted− ||Psp{|t0〉}|X〉||

2
Weighted

)
,

approximately follows a chi-square distribution with 2 de-
grees of freedom and expected value 1. Formula (E8) is rigor-
ously the same13 as the weighted wavelet transform (WWT)
of Foster (1996c), in which the author estimates σ 2 as

σ̂ 2
=

Neff

Neff− 1

(
〈X|X〉Weighted−〈t

0
|X〉2Weighted

)
. (E9)

Significance testing against a Gaussian white noise can be
therefore be performed with the WWT.

Below, we comment on the WWT and make a comparison
with our formulas.

– The WWT is built on the assumption that the time se-
ries holds a Gaussian-shaped trend centred at the probed
translation time τ , the support of which varies with the
probed frequency. This is equivalent to a constant trend
in the vector space provided with the weighted inner
product. This contrasts with our choice for the trend,
Eq. (23), which is independent of the analysis function.

– The WWT under the null hypothesis is only ap-
proximately chi-square distributed, compared to For-
mula (E6) which is exactly chi-squared-distributed.

13Note that Eq. (5-10) of Foster (1996c), which is prerequisite
for the formula of the WWT, is probably erroneous, making unclear
the correspondence with our Eq. (E8). However, the formula given
here in Eq. (E8) is strictly the same as the WWT encoded at https:
//www.aavso.org/sites/default/files/software/wwz.tar.gz.
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– The estimation of the variance of the white noise, σ̂ 2,
which is part of the WWT formula, depends on the sam-
pling. However, two realisations of a white noise are un-
correlated regardless of the time step separating them,
and the estimation of its variance should thus be inde-
pendent of the sampling, like in Sect. 5.2.2 of Part 1.

– To our point of view, working with weighted inner prod-
ucts, approximations like in Eq. (E1) and complicated
tensor notations (see Foster, 1996b) does not bring a
simple and unified view of the problematic.

E2.4 WWA

The weighted wavelet amplitude (WWA), defined in Foster
(1996c, Eq. 5–14), is similar to our amplitude scalogram
defined in Eq. (44). The former is obtained from the latter
taking the trend to be |Gτ,ωt

0
〉, where Gτ,ω is defined in

Sect. E2.3. For practical applications, we note that computing
the inverse of a matrix is needed for the computation of the
WWA (this is also the case for our amplitude scalogram). But
Foster’s theory lacks an in-depth consideration of aliasing is-
sues, and the WWA at some points of the time–frequency
plane may be numerically infinite due to the occurrence of
singular matrices caused by aliasing.

E2.5 WWZ

Under the null hypothesis that the data |X〉 is a Gaussian
white noise, its squared norm in the vector space provided
with the weighted inner product is approximately chi-square
distributed withNeff degrees of freedom, as this follows from
the 2-moment approximation of Sect. 5.3.3 of Part 1, in
which formula (I,98) is applied to matrix G. Consequently,
under the null hypothesis, the following formula,

(Neff− 3)
[
||Psp{|t0〉,|cω〉,|sω〉}|X〉||

2
Weighted− ||Psp{|t0〉}|X〉||

2
Weighted

]
2
[
||X||2Weighted− ||Psp{|t0〉,|cω〉,|sω〉}|X〉||

2
Weighted

] , (E10)

is approximately equal to the Fisher-Snedecor distribution
with 2 and Neff− 3 degrees of freedom. Formula (E10) is
defined in Foster (1996c, Eq. 5–12) and called the weighted
wavelet Z-transform (WWZ). It generalises the F peri-
odogram that we defined in Sect. 5.4 of Part 1.

E3 Mathias et al. (2004)’s theory

Mathias et al. (2004) present a formula similar to our am-
plitude scalogram in the case of a trendless signal. The dif-
ference with our Eq. (35) is that they work with a complex
exponential, exp(iω|t〉), instead of sine and cosine. Switch-
ing these terms in our Eq. (35) and taking a = 1/ω gives the
Eq. (17) of Mathias et al. (2004). The authors then approxi-
mate the Gaussian shape of the Morlet wavelet by a function
with a finite support. Based on that approximation, they de-
velop a fast algorithm for the computation of the scalogram.

Apart from this advantage, this study is in fact more restric-
tive than Foster’s theory, since it does not perform signifi-
cance testing, a zero trend is assumed, no smoothing proce-
dures are considered, and it does not tackle the problem of
aliasing issues explained in Sect. 3.8 and 3.10.

Appendix F: Warning about interpolating the time
series

This appendix compares the scalograms and their confidence
levels in the case of interpolated and non-interpolated time
series. The time series we consider is the δ18O signal from
the GISP2 ice core (Grootes and Stuiver, 1997), for which the
first 11 kyr are removed in order to facilitate the detrending
procedure. The time series is drawn in Fig. F1a and b, and its
time step is given in Fig. F2. The interpolated time series is
built on a time grid with 1t = 30 yr (this is the smallest time
step of the raw time series) in Fig. F1a, or 1t = 300 yr in
Fig. F1b. The (unsmoothed) scalograms with ω0 = 15 of the
raw and interpolated time series are shown in Fig. F3, jointly
with the 95 % analytical confidence levels against a red noise.
We observe that significance testing is strongly dependent on
the interpolation procedure. This is because the parameters
of the red noise are badly estimated when the time series is
interpolated. Consequently, in general, we cannot rely on in-
terpolated time series to perform significance testing. In par-
ticular, we draw the attention on the geological stacks (such
as in Lisiecki and Raymo, 2005, or Huybers, 2007), which
are composed of multiple interpolated time series and aver-
aged together. Significance testing or analysis of the back-
ground noise for such time series may therefore be strongly
biased.

Finally, we observe that, in this example, the power of the
scalogram of the data is weakly affected by the interpolation.

Appendix G: Computing time: analytical versus Monte
Carlo significance levels

A comparison between the computing times, for generating
the scalogram, with the analytical and with the MCMC con-
fidence levels, based on the hypothesis of a red noise back-
ground, is presented in Fig. G1. The computing times are ex-
pressed in function of the number of data points, which are
disposed on a regular time grid in order to make a meaningful
comparison. Confidence levels with the analytical approach
are estimated with a 2-moment approximation. The number
of samples for the MCMC approach is 10 000 for the 95th
percentiles and 100 000 for the 99th percentiles. The smooth-
ing coefficient is γ = 0.5, and the other parameters are de-
fault parameters of WAVEPAL. All the runs were performed
on the same computer14.

14CPU type: SandyBridge 2.3 GHz. RAM: 64 GB.
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is given in Fig. F2. The interpolated time series is built on a time grid with �t = 30 yr (this is is the smallest time step of

the raw time series) on Fig. F1a, or �t = 300 yr on Fig. F1b. The (unsmoothed) scalograms with !0 = 15 of the raw and

interpolated time series are shown in Fig. F3, jointly with the 95 % analytical confidence levels against a red noise. We observe

that significance testing is strongly dependent on the interpolation procedure. This is because the parameters of the red noise

are badly estimated when the time series is interpolated. Consequently, in general, we cannot rely on interpolated time series5

to perform significance testing. In particular, we draw the attention on the geological stacks, such as in Lisiecki and Raymo

(2005) or Huybers (2007), which are composed of multiple interpolated time series and averaged together. Significance testing

or analysis of the background noise for such time series may therefore be strongly biased.

Finally, we observe that, in this example, the power of the scalogram of the data is weakly affected by the interpolation.

(a) (b)

Figure F1. �18O signal from the GISP2 ice core (Grootes and Stuiver, 1997), for which the first 11 kyr are removed. Raw (red dots) and interpolated (blue

line) time series, with (a) �t = 30 yr and (b) �t = 300 yr.

Figure F2. Time step of the �18O signal from the GISP2 ice core.

36

Figure F1. δ18O signal from the GISP2 ice core (Grootes and Stuiver, 1997), for which the first 11 kyr are removed. Raw (red dots) and
interpolated (blue line) time series, with (a) 1t = 30 yr and (b) 1t = 300 yr.
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Figure F2. Time step of the δ18O signal from the GISP2 ice core.

With this parametrisation, and within this interval of the
number of data points, we see that the analytical approach

is faster than the MCMC approach. The analytical approach
delivers computing times of the same order of magnitude re-
gardless of the percentile (the two blue curves in Fig. G1a
and b are of the same order of magnitude), unlike the MCMC
approach, which must require more samples as the level of
confidence increases in order to keep a sufficient accuracy.
The difference between both computing times therefore in-
creases as the level of confidence increases. Note, however,
that the 2-moment approximation, for the estimation of the
analytical confidence levels, is very fast from a computa-
tional point of view. Increasing the number of conserved mo-
ments may considerably increase the computational cost as-
sociated with the analytical approach. But this configuration
is rarely used in practice because it often results in numerical
instabilities and badly estimated percentiles, as explained in
Sect. 4.2.
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Figure F3. Scalogram of the time series presented in Fig. F1 and the 95 % analytical confidence levels against a red noise. (a) Raw time
series. (b) Interpolated time series with 1t = 30 yr. (c) Interpolated time series with 1t = 300 yr.

and the other parameters are default parameters of WAVEPAL. All the runs were performed on the same computer14.

With this parametrization, and within this interval of the number of data points, we see that the analytical approach is faster

than the MCMC approach. The analytical approach delivers computing times of the same order of magnitude whatever is

the percentile (the two blue curves in Fig. G1a and G1b are in the same order of magnitude), unlike the MCMC approach,

which must require more samples as the level of confidence increases, in order to keep a sufficient accuracy. The difference5

between both computing times therefore increases as the level of confidence increases. Note, however, that the 2-moment

approximation, for the estimation of the analytical confidence levels, is very fast from a computational point of view. Increasing

the number of conserved moments may considerably increase the computational cost associated to the analytical approach. But

this configuration is rarely used in practice because it often results in numerical instabilities and badly estimated percentiles,

as explained in Sect. 4.2.10

(a) (b)

Figure G1. Computing times for generating the scalogram with analytical (blue) and MCMC (green) confidence levels, in function of the number of data

points (disposed on a regular time grid). Log-log scale. (a) 95th percentiles. (b) 99th percentiles.
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number of data points (disposed on a regular time grid). Log–log scale. (a) 95th percentiles. (b) 99th percentiles.
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