Articles | Volume 24, issue 3
https://doi.org/10.5194/npg-24-553-2017
https://doi.org/10.5194/npg-24-553-2017
Research article
 | 
06 Sep 2017
Research article |  | 06 Sep 2017

Non-Gaussian data assimilation of satellite-based leaf area index observations with an individual-based dynamic global vegetation model

Hazuki Arakida, Takemasa Miyoshi, Takeshi Ise, Shin-ichiro Shima, and Shunji Kotsuki

Related authors

Impact of reduced non-Gaussianity on analysis and forecast accuracy by assimilating every-30-second radar observation with ensemble Kalman filter: idealized experiments of deep convection
Arata Amemiya and Takemasa Miyoshi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2543,https://doi.org/10.5194/egusphere-2025-2543, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Localization in the mapping particle filter
Juan Martin Guerrieri, Manuel Arturo Pulido, Takemasa Miyoshi, Arata Amemiya, and Juan José Ruiz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2420,https://doi.org/10.5194/egusphere-2025-2420, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Using Data Assimilation to Improve Data-Driven Models
Michael Goodliff and Takemasa Miyoshi
EGUsphere, https://doi.org/10.5194/egusphere-2025-933,https://doi.org/10.5194/egusphere-2025-933, 2025
Short summary
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024,https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024,https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
Nonlin. Processes Geophys., 32, 167–187, https://doi.org/10.5194/npg-32-167-2025,https://doi.org/10.5194/npg-32-167-2025, 2025
Short summary
Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
Nonlin. Processes Geophys., 32, 117–130, https://doi.org/10.5194/npg-32-117-2025,https://doi.org/10.5194/npg-32-117-2025, 2025
Short summary
Bridging Data Assimilation and Control: Ensemble Model Predictive Control for High-Dimensional Nonlinear Systems
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-595,https://doi.org/10.5194/egusphere-2025-595, 2025
Short summary
Evaluation of Effectiveness of Intervention Strategy in Control Simulation Experiment through Comparison with Model Predictive Control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-26,https://doi.org/10.5194/npg-2024-26, 2024
Revised manuscript accepted for NPG
Short summary
Long-window hybrid variational data assimilation methods for chaotic climate models tested with the Lorenz 63 system
Philip David Kennedy, Abhirup Banerjee, Armin Köhl, and Detlef Stammer
EGUsphere, https://doi.org/10.48550/arXiv.2403.03166,https://doi.org/10.48550/arXiv.2403.03166, 2024
Short summary

Cited articles

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Atlas, R.: Atmospheric observations and experiments to assess their usefulness in data assimilation, J. Meteorol. Soc. Jpn., 75, 111–130, 1997.
Bickel, P., Li, B., and Bengtsson, T.: Sharp failure rates for the bootstrap particle filter in high dimensions, in: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, IMS Collections, 3, edited by: Clarke, B. and Ghosal, S., Institute of Mathematical Statistics, Beachwood, Ohio, USA, 318–329, 2008.
Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E., François, C., Gritti, E. S., Legay, M., Pagé, C., Thuiller, W., Viovy, N., and Leadley, P.: Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty, Ecol. Lett., 15, 533–544, 2012.
Demarty, J., Chevallier, F., Friend, A. D., Viovy, N., Piao, S., and Ciais, P.: Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model, Geophys. Res. Lett., 34, L15402, https://doi.org/10.1029/2007GL030014, 2007.
Download
Short summary
This is the first study assimilating the satellite-based leaf area index observations every 4 days into a numerical model simulating the growth and death of individual plants. The newly developed data assimilation system successfully reduced the uncertainties of the model parameters related to phenology and carbon dynamics. It also provides better estimates of the present vegetation structure which can be used as the initial states for the simulation of the future vegetation change.
Share