Articles | Volume 24, issue 3
https://doi.org/10.5194/npg-24-553-2017
https://doi.org/10.5194/npg-24-553-2017
Research article
 | 
06 Sep 2017
Research article |  | 06 Sep 2017

Non-Gaussian data assimilation of satellite-based leaf area index observations with an individual-based dynamic global vegetation model

Hazuki Arakida, Takemasa Miyoshi, Takeshi Ise, Shin-ichiro Shima, and Shunji Kotsuki

Related authors

Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5-2.3.0
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2507,https://doi.org/10.5194/egusphere-2023-2507, 2024
Short summary
Overcoming computational challenges to realize meter- to submeter-scale resolution in cloud simulations using the super-droplet method
Toshiki Matsushima, Seiya Nishizawa, and Shin-ichiro Shima
Geosci. Model Dev., 16, 6211–6245, https://doi.org/10.5194/gmd-16-6211-2023,https://doi.org/10.5194/gmd-16-6211-2023, 2023
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Control simulation experiments of extreme events with the Lorenz-96 model
Qiwen Sun, Takemasa Miyoshi, and Serge Richard
Nonlin. Processes Geophys., 30, 117–128, https://doi.org/10.5194/npg-30-117-2023,https://doi.org/10.5194/npg-30-117-2023, 2023
Short summary
Simulation of marine stratocumulus using the super-droplet method: Numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.0
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
EGUsphere, https://doi.org/10.5194/egusphere-2023-133,https://doi.org/10.5194/egusphere-2023-133, 2023
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
A quest for precipitation attractors in weather radar archives
Loris Foresti, Bernat Puigdomènech Treserras, Daniele Nerini, Aitor Atencia, Marco Gabella, Ioannis V. Sideris, Urs Germann, and Isztar Zawadzki
Nonlin. Processes Geophys., 31, 259–286, https://doi.org/10.5194/npg-31-259-2024,https://doi.org/10.5194/npg-31-259-2024, 2024
Short summary
Quantum data assimilation: a new approach to solving data assimilation on quantum annealers
Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi
Nonlin. Processes Geophys., 31, 237–245, https://doi.org/10.5194/npg-31-237-2024,https://doi.org/10.5194/npg-31-237-2024, 2024
Short summary
Evolution of small-scale turbulence at large Richardson numbers
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024,https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
Prognostic Assumed-PDF (DDF) Approach: Further Generalization and Demonstrations
Jun-Ichi Yano
EGUsphere, https://doi.org/10.5194/egusphere-2024-287,https://doi.org/10.5194/egusphere-2024-287, 2024
Short summary
Leading the Lorenz-63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-4,https://doi.org/10.5194/npg-2024-4, 2024
Revised manuscript accepted for NPG
Short summary

Cited articles

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Atlas, R.: Atmospheric observations and experiments to assess their usefulness in data assimilation, J. Meteorol. Soc. Jpn., 75, 111–130, 1997.
Bickel, P., Li, B., and Bengtsson, T.: Sharp failure rates for the bootstrap particle filter in high dimensions, in: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, IMS Collections, 3, edited by: Clarke, B. and Ghosal, S., Institute of Mathematical Statistics, Beachwood, Ohio, USA, 318–329, 2008.
Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrêne, E., François, C., Gritti, E. S., Legay, M., Pagé, C., Thuiller, W., Viovy, N., and Leadley, P.: Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty, Ecol. Lett., 15, 533–544, 2012.
Demarty, J., Chevallier, F., Friend, A. D., Viovy, N., Piao, S., and Ciais, P.: Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model, Geophys. Res. Lett., 34, L15402, https://doi.org/10.1029/2007GL030014, 2007.
Download
Short summary
This is the first study assimilating the satellite-based leaf area index observations every 4 days into a numerical model simulating the growth and death of individual plants. The newly developed data assimilation system successfully reduced the uncertainties of the model parameters related to phenology and carbon dynamics. It also provides better estimates of the present vegetation structure which can be used as the initial states for the simulation of the future vegetation change.