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Abstract. We developed a data assimilation system based
on a particle filter approach with the spatially explicit
individual-based dynamic global vegetation model (SEIB-
DGVM). We first performed an idealized observing system
simulation experiment to evaluate the impact of assimilating
the leaf area index (LAI) data every 4 days, simulating the
satellite-based LAI. Although we assimilated only LAI as
a whole, the tree and grass LAIs were estimated separately
with high accuracy. Uncertain model parameters and other
state variables were also estimated accurately. Therefore, we
extended the experiment to the real world using the real Mod-
erate Resolution Imaging Spectroradiometer (MODIS) LAI
data and obtained promising results.

1 Introduction

The terrestrial biosphere is an important part of the Earth
system model (ESM) to simulate the carbon and water cy-
cles. However, terrestrial biosphere models tend to have large
uncertainties, for example, in phenology (Richardson et al.,
2012; Murray-Tortarolo et al., 2013) and in spatial distribu-
tions of plant species (Cheaib et al., 2012). Recently, data as-
similation (DA) methods which incorporate observation data
into models have been applied to terrestrial biosphere models
to reduce the uncertainties in the state variables and model
parameters (Luo et al., 2011; Peng et al., 2011). Previous

studies have successfully applied the ensemble Kalman fil-
ter (e.g., Evensen, 2003; Williams et al., 2005; Quaife et al.,
2008; Stöckli et al., 2011) or adjoint method (e.g., Kaminski
et al., 2013; Kato et al., 2013) to the “static” vegetation mod-
els, but studies with the “dynamic” global vegetation mod-
els (DGVMs) are still limited (Luo et al., 2011; Peng et al.,
2011), although Hartig et al. (2012) pointed out the impor-
tance.

The static vegetation models are time independent and do
not include the vegetation succession process (Peng, 2000).
Alternatively, DGVMs include the vegetation succession
process and can simulate carbon and water cycle changes
linking to the vegetation shift under the changing climate.
Specifically, “individual-based” DGVMs simulate local in-
teractions among individual plants such as competitions for
light and water, so that the model can simulate the vegeta-
tion succession more explicitly (Smith et al., 2001; Sato et
al., 2007). Garreta et al. (2010) pioneered to apply DA to
an individual-based DGVM for paleoclimate, but no study
has been published thus far to assimilate fine timescale data
from satellites and ground stations using an individual-based
DGVM. If the initial vegetation structure and the model pa-
rameters of an individual-based DGVM are estimated more
accurately by assimilating the fine timescale data, the uncer-
tainties of the simulated future vegetation would be greatly
reduced.
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This study explores the ability to assimilate frequent
satellite-based leaf area index (LAI) data with an individual-
based DGVM known as the SEIB-DGVM, which stands for
the spatially explicit individual-based DGVM (Sato et al.,
2007). We developed a non-Gaussian ensemble DA system
with the SEIB-DGVM based on a particle filter approach.
Although the particle filter is an existing, well-known ap-
proach, this is the first attempt to apply it to an individual-
based DGVM with frequent LAI data. Therefore, we focus
on the methodological development in this study and per-
form a series of numerical experiments at a single location
with only a couple of plant functional types (PFTs) as the
first step. It would be numerically straightforward to extend
it to the global scale in future studies, since the local-scale
experiments can be performed in parallel for different loca-
tions. In the present study, we first perform idealized simula-
tion experiments to investigate how well we can estimate the
model parameters associated with phenology by assimilating
the LAI data every 4 days, simulating the satellite-based LAI
product from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) aboard the Terra and Aqua spacecrafts.
We also investigate to what extent assimilating the LAI data
could improve the estimates of the state variables such as
GPP (gross primary production), RE (ecosystem respiration),
NEE (net ecosystem exchange), and biomass, the most fun-
damental variables for carbon cycle and vegetation states.
Sensitivities to the filter settings such as the random perturba-
tion sizes and particle sizes are also investigated. Following
the idealized experiments, we perform an experiment using
the real MODIS LAI observation data to see how well the
proposed approach performs in the real world.

2 Method

2.1 SEIB-DGVM

The SEIB-DGVM simulates establishment, growth, and de-
cay of the individuals of prescribed PFTs within a spa-
tially explicit virtual forest (Sato et al., 2007), forced by cli-
mate conditions such as air temperature, soil temperature,
cloudiness, precipitation, humidity, and winds. We used ver-
sion 2.71 (Sato and Ise, 2012) but with minimal modifica-
tions for DA. The model simulates daily states, but the orig-
inal model outputs were only once per year. Outputs are
needed for DA once every 4 days; thus, we modified the
model code to output the model states every 4 days. In ad-
dition, the original model code assumed running for many
years continuously, and the initial seed for the random num-
ber generator was fixed. As a result, in this study, we stop the
model every 4 days, and the same seed is repeated every time
when we start the model. Therefore, we modified the model
code to randomly generate the seed for the random number
generator every time when we initiate the model. Other mod-
ifications are summarized in Appendix A.

The size of the model state space is determined by the
prognostic variables for tree, grass, forest as a whole, and
soil. Each individual tree has 13 prognostic variables such as
biomass of root, leaf and trunk, and we assume that up to
300 trees can exist in the forest area. Therefore, the number
of tree variables is less than or equal to 3900 (i.e., 300×13).
As for grass, the forest area is divided into 30 by 30 grid
cells, and each grid cell has four variables such as biomass
of root and leaf. Hence, the number of grass variables is fixed
at 3600 (i.e., 30× 30× 4). In addition, forest as a whole has
eight prognostic variables such as snow and soil carbon mass,
and finally, soil moisture (one variable) is defined for 30 soil
layers. Therefore, the number of state variables is between
3638 (no tree, i.e., 0+ 3600+ 8+ 30) and 7538 (300 trees,
i.e., 3900+ 3600 + 8 + 30).

Among the various model outputs ranging from individ-
ual tree height to soil water content (Sato et al., 2007,
with updated information available from the package of ver-
sion 2.71), we focus on LAI because it is the key to the veg-
etation model, and because previous studies show a promise
in assimilating satellite-based LAI data with a static vege-
tation model (Stöckli et al., 2011) and a “non-individual-
based” DGVM (Demarty et al., 2007). We extend the pre-
vious studies to assimilate the LAI data with the individual-
based DGVM.

2.2 Particle filter-based DA

Individual-based DGVMs include highly non-linear pro-
cesses such as occasional establishment and death of individ-
ual plants. These processes produce and eliminate state vari-
ables, and the phase space changes time to time. DA meth-
ods that have been used in geophysical applications usually
assume that the state variables are defined uniquely for the
given dynamical system and that the phase space dimension
stays the same. The widely used ensemble Kalman filter, for
example, finds the best linear combination of the ensemble
with optimal fit to the observations, but it is not trivial to de-
fine a linear combination or even the ensemble mean for the
variables missing in some ensemble members. Therefore, it
would not be trivial to apply the widely used DA methods to
individual-based DGVMs.

Alternatively, particle filters run independent parallel sim-
ulations or particles and represent the probability den-
sity function (PDF) explicitly by assigning probability to
each particle. Therefore, particle filters can handle non-
Gaussianity and non-linearity explicitly, and can be applied
to the individual-based DGVMs in a straightforward manner
(e.g., Garreta et al., 2010) even though the phase space di-
mension is different for each particle.

Here, we adopt a particle filter approach known as se-
quential importance resampling (SIR; Fig. 1) (Gordon et al.,
1993). Although the method is not efficient for large dimen-
sional systems (e.g., Bickel et al., 2008; Snyder et al., 2008,
2015; Snyder, 2012), we tested this well-known method as
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Figure 1. Schematic showing the SIR particle filter method. The
size of the circles corresponds to the assigned probability.

the first attempt to construct the DA system with SEIB-
DGVM. First, n parallel simulations are performed, and each
simulation is considered as a particle representing the true
state of the system with equal probability. Next, likelihood
l
(i)
t is calculated for each particle using the Gaussian likeli-

hood function:

l
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for i = 1, . . .,n.

Here, x(i)t |t−1 denotes the simulated LAI of the ith particle at
time t from the previous time step t − 1, yt the observed
LAI at time t , and σ the observation error standard devia-
tion. Since the prior probability is uniform, Bayes’ rule gives
that the posterior probability of the ith particle is propor-
tional to l(i)t , i.e., the particles closer to the observation have
more probability. Next, we resample the particles, so that
each particle has equal probability. The particles with more
probability (larger l(i)t ) are duplicated, and the particles with
less probability (smaller l(i)t ) are removed. If n is sufficiently
large, we can evaluate the posterior PDF accurately. Each re-
sampled particle represents the true state of the system with
equal probability and acts as the initial particle for the next
time step. This Bayesian framework is repeated.

2.3 OSSE and the real-world experiment

We first perform a series of idealized observing system sim-
ulation experiments (OSSEs). The OSSE (e.g., Atlas, 1997)
is a widely used approach in meteorological DA to test the
general performance of a DA system and to evaluate the im-
pact of specific observing systems. OSSE has the nature run,
which is usually generated by running a simulation for a cer-
tain period. Observation data are simulated from the nature
run by applying the observation operator, i.e., converting the

model variables to the observed variables. Here, we add ar-
tificial random noise to simulate the observation error. DA
experiments are initiated from the state independent of the
nature run, and the simulated observations are assimilated.
The resulting analyses and subsequent forecasts are com-
pared with the nature run to evaluate the performance of DA.
Once an OSSE is done, it is straightforward to extend the
OSSE to the real world by simply replacing the simulated
observations with the real-world observations.

3 OSSE

3.1 Experimental design

To generate the nature run, the SEIB-DGVM was initial-
ized with the bare ground (i.e., no plant at the beginning)
and was run for 107 years using the climate forcing data
from 2001 to 2010 available at the SEIB-DGVM web page
(http://seib-dgvm.com/). Here, the 10-year forcing data are
repeated for the 107-year simulation, and the last 7 years
from years 101 to 107 use the actual climate forcing of
2001 to 2007; thus, we refer to years 101 to 107 as 2001
to 2007. The daily climate data were generated by the proce-
dure of Sato and Ise (2012) with updated information avail-
able at the SEIB-DGVM web page, based on the monthly
Climate Research Unit observation-based data (CRU-TS3.22
0.5◦ monthly climate time series) (Harris et al., 2014) and the
daily data from the National Centers for Environmental Pre-
diction (NCEP)/National Center for Atmospheric Research
(NCAR) reanalysis (Kalnay et al., 1996). We chose the study
area at one of the AsiaFlux sites, the Siberia Yakutsk larch
forest site at Spasskaya Pad, the middle basin of the Lena
River (62◦15′18′′ N, 129◦14′29′′ E). The observed climate
data at this site were not directly used in this study, but these
data may have been included in the NCEP/NCAR reanalysis.
Field-observed carbon flux data are available as the ground
truth to verify the DA results at this site. Forced by the cli-
mate data, the SEIB-DGVM simulates the vegetation shifts
from the bare ground to a grassland, and then to a forest.
The two PFTs, the boreal deciduous needleleaf trees and C3
grass, are the dominant PFTs in this study area. Therefore,
we do not consider the other PFTs in this study following
Sato et al. (2010). We call these two PFTs simply “tree” and
“grass”.

The nature run (Fig. 2a) was performed with the “true” pa-
rameter values Pmax= 15 µmolCO2 m−2 s−1 and Dor= 230
DOY (day of year) for tree and Pmax= 9 µmolCO2 m−2 s−1

and Dor= 270 DOY for grass, where Pmax and Dor stand
for the maximum photosynthesis rate and the start date of
the dormancy, respectively (Fig. 2b). Hereafter, we omit the
units for Pmax (µmolCO2 m−2 s−1) and Dor (DOY) for sim-
plicity. The LAI observations for the last 4 years from 2004
to 2007 were created by adding independent Gaussian ran-
dom noise to the LAI values from the nature run (Fig. 2a)
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Figure 2. Schematic illustrations of the nature run, observations, and model parameter sensitivities. (a) Time series of LAI (m2 m−2) for the
nature run (black), simulated observations (red dots), and their error standard deviations (SD, red error bars). (b) Time series of LAI with
different Pmax and Dor values. The perturbed parameters (Pmax and Dor for tree and grass) cause differences between the particles.
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Figure 3. Time series of LAI for (a) tree plus grass, (b) tree, and (c) grass for an experiment without DA (NODA, left) and an experiment with
DA (TEST, right). Dark and light gray areas indicate the quartiles and 1–99 % quantiles of the particles as shown in the legend. Thick black
curves indicate the medians. Blue dots with error bars indicate the observations and their error standard deviations, and red lines indicate the
nature run.

every 4 days, simulating the MODIS LAI product. Here, the
observation error standard deviation was given by 10 % of
the nature run LAI value. The observed LAI values of less
than 0.5 were not used for DA because the MODIS data for
the real-world experiment did not include LAI values of less
than 0.5. There are too few data with real MODIS LAI values
of less than 0.5, and we assign the missing value in prepro-
cessing. Since the LAI is observed only for values of 0.5 or
larger, the LAI observation exists only in the summer season.

Next, 8000 particles (parallel simulations) were gener-
ated with uniformly perturbed parameters: Pmax= [0, 60]
for tree, Pmax= [0, 15] for grass, and Dor= [200, 300] for
both. Here, [a, b] denotes random draws from the uniform
distribution between a and b. These initial perturbation sizes
are based on the previous studies (Kolari et., 2006; Zeng et
al., 2011; Zhao et al., 2015; Takagi et al., 2015). We ran 8000

parallel simulations for 103 years for spin-up from the bare
ground using the same climate forcing data as the nature run.
In the course of the vegetation succession, these randomly
perturbed parameter sets result in a variety of LAI simula-
tions (Fig. 2b).

The 8000 particles at the end of the 103-year spin-up runs
are used as the initial conditions for DA. The simulated LAI
observations are assimilated every 4 days. The nature run and
particle filter use the same climate forcing data, so that the
difference comes from the model parameter values. The par-
ticles continue to be the free runs until the first LAI obser-
vation is assimilated in the summer season. The state vari-
ables and model parameters are estimated together at DA,
and the model systematic errors associated with the model
parameters are corrected by DA with parameter estimation.
No explicit bias correction is applied. To avoid the exact
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Figure 4. Similar to Fig. 3 but for the model parameters: (a) Pmax for tree, (b) Pmax for grass, (c) Dor for tree, and (d) Dor for grass. There
is no observation for these parameters.

duplications after resampling, the model parameters Pmax
and Dor are randomly perturbed for the duplicated parti-
cles. The random perturbations avoid particle degeneracy,
which usually causes filter divergence. After some tuning, we
found proper perturbation sizes that work for stable filtering
without causing particle degeneracy, especially for biomass
which is found to be the most sensitive to the perturbation
sizes. Here, random draws [−4, 4] are added to Pmax for
tree and to Dor for both tree and grass, and [−1, 1] are added
to Pmax for grass because the initial Pmax perturbation size
for grass is a quarter of that of tree. The sensitivity to the re-
sampling perturbation sizes will be discussed in the next sec-
tion. In the case that these perturbed parameters exceed the
corresponding initial parameter range, the excess value was
bounced back from the limits. To assess the impact of DA,
we also perform an experiment without DA (“NODA” here-
after) and compare it to the experiment with DA (“TEST”
hereafter).

3.2 Results

Figure 3 shows the time series of LAI for NODA (left) and
TEST (right). The observations (Fig. 3a, blue dots with er-
ror bars) cannot distinguish the tree and grass, but the model
simulates LAIs for tree and grass separately (Fig. 3b, c). Al-
though the particles without DA are widely spread (left, gray
areas), DA makes the particles much narrower (right) and
consistent with the nature run (red curves). With DA, the me-

dian of the particles for tree is almost identical to the nature
run for the entire 4 years (Fig. 3b, right). As for grass, the me-
dian of the particles is also very close to the nature run with
DA, but in the first 3 years the dormancy period is delayed
(Fig. 3c, right).

The model parameters are estimated accurately (Fig. 4).
There is no direct observation of these parameters, so that
the estimations are purely due to DA of the LAI observa-
tions. Although the particles of the NODA experiment are
uniformly distributed (Fig. 4, left), DA makes the particles
close to the true parameters (Fig. 4, right). Since we assim-
ilated the LAI only when it was 0.5 or larger, DA has an
impact only in the summer season when the leaves grow. It
takes 1–4 years until the true values fall within the quartiles
of the particles. The Pmax estimates for both tree and grass
show occasional jumps but tend to stay around the true val-
ues (Fig. 4a, b). Dor for tree seems the most accurate and
stable after the dormancy period of the first year (Fig. 4c).
Dor for grass takes the longest; the estimation is not accu-
rate until the dormancy of the fourth year (Fig. 4d). This may
be related to the previous results showing the erroneous esti-
mates of the grass LAI near the dormancy period in the first
3 years (Fig. 3c). The systematic errors in NODA come from
the uncertain parameter settings. TEST can estimate the pa-
rameters through DA and can reduce the systematic errors.
This is different from the bias-correction strategy of the first
guess.
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Figure 5. Similar to Figs. 3 and 4 but for unobserved model variables: (a) GPP, (b) RE, (c) NEE, and (d) biomass.

Table 1. Parameter settings for TEST, OSSE2 and OSSE3.

OSSEs Pmax Pmax Dor Dor
for for for for

tree grass tree grass

TEST 15 9 230 270
OSSE2 20 12 220 260
OSSE3 25 7 210 280

Other model variables such as GPP, RE, NEE, and biomass
show large improvements (Fig. 5). Although the particles of
the NODA experiment are widely spread, DA with only LAI
observations greatly reduces the uncertainties for the four
variables, and the estimations are generally reasonable.

4 Sensitivity experiments for OSSE

4.1 Sensitivity to the nature run

To investigate the sensitivity to the choice of the nature
run, we performed two additional OSSEs, which we call
“OSSE2” and “OSSE3”, by generating different nature runs
with different parameter sets (Table 1). The random numbers
for the observation errors are also different. The other set-
tings follow the TEST experiment.

The results show that both OSSE2 and OSSE3 perform
well in general. Namely, the LAI and parameters are es-

timated generally well (Fig. 6). We find the main differ-
ence between OSSE2 and OSSE3 in the parameters for grass
(Fig. 6c, e). OSSE3 shows significantly larger uncertainties
for the parameters for grass. In OSSE2, the Pmax value for
grass is larger and produces more grass LAI. Since grass
starts to grow earlier and stays longer than tree, it is critical to
have LAI observations near the emerging and falling periods
for estimating the grass parameters. Due to the larger Pmax
value for grass in OSSE2, LAI can be observed with the ob-
serving threshold of LAI of 0.5 near the emerging and falling
periods. By contrast, in OSSE3, the Pmax value for grass is
smaller, and the small grass LAI of less than 0.5 cannot be
observed. We can see this in the LAI time series (Fig. 6a,
right) near the tails in the spring and fall seasons every year.
The uncertainties of LAI are not reduced year by year, cor-
responding to the large uncertainties of the grass parameters.
In the summer, LAI becomes larger mostly due to trees, so
that the tree parameters can be estimated well.

4.2 Sensitivity to the initial perturbation size

Here, we investigate the sensitivity to the initial perturbation
sizes with particle sizes ranging from 1000 to 16 000. Table 2
shows the three initial perturbation settings: small, moder-
ate, and large. For the TEST experiment, the moderate initial
perturbation sizes were used. We perform additional sensitiv-
ity experiments with the small and large initial perturbation
sizes. Except for the initial perturbation sizes and the particle
size, the experiments follow the TEST experiment.
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Figure 6. Similar to Figs. 3 and 4 but for OSSE2 (left) and OSSE3 (right). (a) Time series of LAI for tree plus grass, (b) Pmax for tree,
(c) Pmax for grass, (d) Dor for tree, and (e) Dor for grass.

Table 2. Initial perturbation settings.

Initial Pmax Pmax Dor Dor
perturbation for for for for
sizes tree grass tree grass

Small [0, 20] [0, 10] [200, 250] [250, 300]
Moderate [0, 60] [0, 15] [200, 300] [200, 300]
Large [0, 120] [0, 30] [150, 350] [150, 350]

Table 3 shows the mean absolute errors (MAEs) and the
widths of the 1–99 % quantiles, respectively, averaged over
a year in 2007. We consider that the filter diverges when
the MAE is larger than the half width of the 1–99 % quan-
tiles, as shown by the italic font in the tables. The results
show that the filter diverges for biomass in 10 out of 15
experiments. The five experiments that do not diverge are
(4000; small), (8000; small), (16 000; small), (8000; mod-
erate)=TEST, and (16 000; moderate), where ( ; ) denotes
(particle size; initial perturbation sizes). The (1000; large)
experiment causes filter divergence for most variables and
parameters. The (2000; large) experiment shows filter diver-

gence for Dor for grass in addition to biomass. Sampling a
wider interval with a smaller particle size generally reduces
the particle density, or the effective number of the particles,
so that the results seem to be reasonable.

4.3 Sensitivity to the resampling perturbation size

Here, we investigate the sensitivity to the resampling pertur-
bation sizes with particle sizes ranging from 500 to 16 000,
in a similar way as the previous subsection. Resampling per-
turbations add random perturbations to Pmax and Dor when
resampling and avoid particle degeneracy. Table 4 shows the
three resampling perturbation settings: small, moderate, and
large. For the TEST experiment, the moderate resampling
perturbation sizes were used.

Table 5 shows similar tables as Table 3 but for the sensi-
tivity to the resampling perturbation sizes. We use the sim-
ilar notation of ( ; ) denoting (particle size; resampling per-
turbation setting). The results show that the filter diverges
for biomass in 13 out of 18 experiments. The five experi-
ments that do not diverge are (4000; large), (8000; moder-
ate)=TEST, (8000; large), (16 000; moderate), and (16 000;
large). The (500; small) experiment is the most unstable, with
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Table 4. Resampling perturbation settings.

Resampling Pmax Pmax Dor Dor
perturbation for for for for
sizes tree grass tree grass

Small [−2, 2] [−0.5, 0.5] [−2, 2] [−2, 2]
Moderate [−4, 4] [−1, 1] [−4, 4] [−4, 4]
Large [−8, 8] [−2, 2] [−8, 8] [−8, 8]

more variables and parameters showing filter divergence. Re-
sampling perturbations act as variance inflation in the ensem-
ble filters (e.g., Anderson and Anderson, 1999). It is known
that variance inflation generally stabilizes the filter, and the
results obtained here seem to be consistent. With 4000 par-
ticles or more, the parameters and state variables except for
biomass were estimated accurately, although the filter col-
lapsed for biomass with smaller perturbations even with large
particle sizes.

5 Real-world experiment

5.1 Experimental settings

Here, the OSSE is extended to the real world by replacing the
simulated observations with the real observations. The sensi-
tivity results in the previous section showed that the settings
used for the TEST experiment provided stable filter perfor-
mance; therefore, we follow the TEST experiment here with
the moderate initial and resampling perturbation sizes and
with 8000 particles.

Since the OSSE used the actual climate forcing in 2004 to
2007, we used the quality-controlled MODIS LAI product of
MCD15A3 for those years with flagged as “good quality”,
“Terra or Aqua”, “detectors apparently fine for up to 50 %”,
“significant clouds not present”, and “main method used with
or without saturation”. We took the median of the LAI obser-
vations in the 10 km radius from the study site (62◦15′18′′ N,
129◦14′29′′ E). There are a number of missing data in the
quality-controlled MODIS data. Therefore, if the number of
the data in the 10 km radius is less than 300, we set these data
as the missing data for DA. Since the MODIS data resolution
is 1 km, the 10 km radius area contains about 314 data. The
observation error standard deviations are assigned to each
LAI datum in the original MODIS product (Knyazikhin et
al., 1999). We rely on the estimate of the observation error
standard deviations and take the median of the error standard
deviations in the same way as getting the LAI data. The ob-
servation error standard deviation is used in the particle filter
when computing the likelihood function (Eq. 1).

The model-simulated NEE was validated with the field ob-
servation data at this AsiaFlux site (Ohta et al., 2001, 2008,
2014). The data were quality controlled by the steady-state
test as indicated by the quality flag 0. Although the model

simulates daily-average NEE, the field observation data rep-
resent instantaneous NEE every 30 min. The observation data
are missing frequently, and it is not trivial to derive daily av-
erages. Therefore, the raw data are compared with the DA
results directly. This allows only a rough verification about
whether or not the simulated NEE is in a reasonable range,
but this is the only possible verification with an independent
source.

5.2 Results

Figures 7, 8, and 9 show similar time series to Figs. 3, 4, and
5, respectively, but with the real MODIS LAI observations.
Although the particles of the NODA experiments are widely
spread, DA makes the particles much narrower (right) for all
variables and parameters. With DA, the median of LAI is
very close to the observations, within the range of the obser-
vation error standard deviations (Fig. 7a). The grass and tree
LAIs are estimated separately (Fig. 7b, c), but there is no di-
rect observation or other verification truth to compare with.
This is similar to the model parameters (Fig. 8) and other
model variables (Fig. 9) except for NEE, for which direct
field observation data are available. As in the OSSE results,
the range of uncertainties for NEE is reduced significantly by
DA (Fig. 9c). Since the field observations are made instan-
taneously every 30 min, the observation values (red) appear
to have a wider range. However, the SEIB-DGVM simulates
only daily-average NEE, and it is not straightforward to com-
pare the outputs from SEIB-DGVM with the field observa-
tions. We still find that the median of NEE becomes closer to
the observations, particularly near the dormancy period. The
simulated NEE generally stays within the reasonable range
compared with the field observations. In general, the particle
filter shows promising results with the real MODIS LAI data.

6 Conclusion

We assimilated the satellite-based MODIS LAI data using a
non-Gaussian ensemble DA system with the SEIB-DGVM
based on the SIR particle filter approach. To the best of the
authors’ knowledge, this is the first study to assimilate the
fine timescale satellite data with an individual-based DGVM.
We found that DA performed generally well both for the
OSSE and real-world experiments. Although we assimilated
only LAI as a whole, the tree and grass LAIs were esti-
mated separately. This suggests that the satellite-based DA
reduced the uncertainties in the initial vegetation structure
of the individual-based DGVM toward the simulation of fu-
ture vegetation change. Another notable result includes that
the model parameters of the individual-based DGVM were
estimated successfully and that the uncertainties in the unob-
served model variables relevant to carbon cycle and vegeta-
tion states were also reduced significantly. Similarly to the
previous studies with a static vegetation model (Stöckli et
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Figure 7. Similar to Fig. 3, showing LAI for (a) tree plus grass, (b) tree, and (c) grass but for the real-world experiment. Red dots with error
bars indicate the observations and their error standard deviations.
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Figure 8. Similar to Fig. 4, showing the model parameters: (a) Pmax for tree, (b) Pmax for grass, (c) Dor for tree, and (d) Dor for grass but
for the real-world experiment.

al., 2011) and a non-individual-based DGVM (Demarty et
al., 2007), the results in the present study also suggest that
LAI is the key to DA for phenology and carbon dynamics.

Generally, particle filters do not work well in high-
dimensional problems (e.g., Bickel et al., 2008; Snyder et
al., 2008, 2015; Snyder, 2012). The SEIB-DGVM has sev-
eral thousand state variables, but we applied random pertur-

bations to only four model parameters in the particle filter.
The four model parameters, i.e., Pmax and Dor for tree and
grass, control the leaf season and photosynthesis rate of the
forest as a whole. Therefore, the effective degrees of freedom
of the estimation problem would be substantially lower than
the number of variables of the SEIB-DGVM. This may be
why the particle filter worked well in this study.
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Figure 9. Similar to Fig. 5, showing the unobserved model variables: (a) GPP, (b) RE, (c) NEE, and (d) biomass but for the real-world
experiment. Red lines indicate the direct field observations made instantaneously every 30 min at the AsiaFlux site, while the model simulates
only the daily averages.

Additional sensitivity experiments revealed general ro-
bustness but some sensitivities to the nature run, initial and
resampling perturbation sizes, and particle size, particularly
for biomass, which tends to show particle degeneracy. When
resampling, the random perturbations were applied only to
Pmax and Dor, and not to model state variables. This con-
tributes to reduce the variety of vegetation structures such
as tree densities and tree heights due to the frequent DA ev-
ery 4 days (not shown). This tends to cause particle degen-
eracy for biomass even with large particle sizes when the re-
sampling perturbation size is small (Table 5). When the re-
sampling perturbation size is relatively large, degeneracy of
the vegetation structure is mitigated to some extent. There-
fore, in this study, we tuned the resampling perturbation sizes
to avoid the filter collapse for biomass, and found that the
“moderate” perturbation size with 8000 particles is a reason-
able choice. However, the moderate perturbation size may be
large for variables other than biomass, and this may be why
the estimated parameters show occasional jumps. Adding re-
sampling perturbations to other variables in addition to Pmax
and Dor would be better. Also, since resampling perturba-
tions affect the particle spread strongly, the DA technique
does not necessarily provide accurate estimates of the errors.
In future studies, we will explore more effective resampling
methods to avoid the filter collapse for biomass and to repre-
sent error estimates more accurately.

As a potential limitation, it is important to note that we
have made strong assumptions in OSSE. For example, the
only source of model imperfections was the model parameter
uncertainties of the four parameters. It was also assumed that
the observation error statistics were perfectly known. These
conditions would have never been met in the real-world ex-
periment.

As the first step, this study focused on the methodologi-
cal development of the data assimilation system with SEIB-
DGVM and estimated only four parameters of two PFTs us-
ing LAI observations at a single location. As a next step,
more parameters and distributions of more diverse PFTs
should be considered at different locations. Local-scale ex-
periments can be performed in parallel for different loca-
tions since the satellite-based LAI observations are available
globally. The simulation with the initial states and parame-
ter sets obtained from the SEIB-DGVM-based DA system
would be expected to improve the estimates of the carbon
cycle changes over the globe.

Data availability. All data and source codes are archived in RIKEN
Advanced Institute for Computational Science and available upon
request from the corresponding authors under the license of the
original providers. The AsiaFlux data cannot be redistributed and
are available from the AsiaFlux database (https://db.cger.nies.go.jp/
asiafluxdb/). The original source code of the SEIB-DGVM is avail-
able at http://seib-dgvm.com/ from the developer, Hisashi Sato.
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Appendix A

Table A1. List of modifications to SEIB-DGVM ver.2.71.

Modification to main.f90

SUBROUTINE main_loop
Initialize variables: parameters (Pmax for tree and grass, Dor for tree and grass) are read here.
Wild fire subroutines: fire function was excluded.

Modification to metabolic.f90

SUBROUTINE photosynthesis_condition:
ce_water (no dimension, the minimum value): limitation on photosynthesis via soil water:
x=min (1.0, max (0.001, stat_water(p)))→ x=min (1.0, max (0.1, stat_water(p)))

SUBROUTINE leaf_season:
Days_leaf_shed (days): day length required for full leaf drop→ from 14 to 30
Days_release_larch (days): days required for full release of stock energy for larch→ from 7 to 60
Checker (foliage→ dormancy)

case (1): if (x < 7.0) flag(p)= .true.→ if (DOY>= Dor_f) flag(p)= .true. (DOY: day of the year, Dor_f: Dor for tree)
case (5:6): if (y > 0.01) flag(p)= .false.→ if (DOY>=Dor_g) flag(p)= .true. (DOY: day of the year, Dor_g: Dor for grass)
If (dfl_leaf_onset(p)→Days_foliation_min) flag(p)= .false.→ comment out

Checker (dormancy→ foliage)
case (1): if (x >= 65.0) flag(p)= .true.→ if (DOY>= 110) flag(p)= .true (DOY: day of the year)
case (5:6): if (y <= 0.01) flag(p)= .false.→ if (DOY>= 110) flag(p)= .true (DOY: day of the year)

Gradual release of stock energy: (for bug fix)
IF (dfl_leaf_onset(p)>= day_length_release) cycle→ IF (dfl_leaf_onset(p)>= (day_length_release-1)) cycle

SUBROUTINE maintenance_resp:
Herbaceous PFT source 1: (for bug fixa)
mass_combust=mass_combust+mass_required→mass_combust=mass_combust+mass_required · x
npp(p)= npp(p)−mass_required→ npp(p)= npp(p)−mass_required · x

SUBROUTINE growth_wood:
Delay_from_foliation (days): delay of stem growth and reproduction process after foliation→ from 21 to 0a

Modification to parameter.txt

TO_f (times yr−1): turn over time for foliage (grass) from 0.50 to 3.19b

TO_r (times yr−1): turn over time for root (tree). We set the same value as the other boreal tree PFTs. from 0.16 to 0.42
ALM1 (m2 m−1): allometry index of LA vs. dbh of sapwood (tree) from 6000 to 0b

ALM3 (g dm m−3): allometry index of trunk mass (tree) from 0 to 700 000b

FR_ratio (g dm g dm−1): ratio of leaf mass vs. root mass (tree) from 0.17 to 0.35b

FR_ratio (g dm g dm−1): ratio of leaf mass vs. root mass (grass) from 0.33 to 0.10a

SLA (one sided m2 g dm−1): specific leaf area (tree) from 0.014 to 0.010b

SLA (one sided m2 g dm−1): specific leaf area (grass) from 0.015 to 0.020b

Topt0 (◦C): optimum temperature (tree) from 20.0 to 21.0b

Tmin (◦C): minimum temperature (tree). We set the same value as the other boreal tree PFTs. from 5.0 to −4.0
Tmax (◦C): maximum temperature (tree) from 35.0 to 38.0b

GS_b2 (no dimension): parameters of stomatal conductance (grass) from 3.0 to 5.0a

M1 (no dimension): asymptotic maximum mortality rate (tree) from 0.003 to 0.001b

TC_min (◦C): minimum coldest month temperature for persisting (tree and grass) from −1000.0 to −45.0b

GDD_min (5 ◦C base): minimum degree-day sum for establishment (tree) from 350 to 250b

Est_scenario: scenario for establishment for tree. Only specified woody PFT was set to establish. a

Est_pft_OnOff: establish switch for tree. Only boreal deciduous needleleaf tree was set to establish. a

without footnote: modifications in this study, a H. Sato (personal communications, 2014), b Sato et al. (2016).
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