Articles | Volume 24, issue 3
https://doi.org/10.5194/npg-24-515-2017
https://doi.org/10.5194/npg-24-515-2017
Research article
 | 
05 Sep 2017
Research article |  | 05 Sep 2017

Data assimilation for moving mesh methods with an application to ice sheet modelling

Bertrand Bonan, Nancy K. Nichols, Michael J. Baines, and Dale Partridge

Related authors

Modelling extensive green roof CO2 exchanges in the TEB urban canopy model
Aurélien Mirebeau, Cécile de Munck, Bertrand Bonan, Christine Delire, Aude Lemonsu, Valéry Masson, and Stephan Weber
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-233,https://doi.org/10.5194/gmd-2024-233, 2025
Preprint under review for GMD
Short summary
Evaluation of root zone soil moisture products over the Huai River basin
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024,https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Analyzing past and future droughts that induce clay shrinkage in France using an index based on water budget simulation for trees
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1079,https://doi.org/10.5194/egusphere-2024-1079, 2024
Short summary
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024,https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Evaluation of model-derived root-zone soil moisture over the Huai river basin
En Liu, Yonghua Zhu, Jean-christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-33,https://doi.org/10.5194/hess-2023-33, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Dynamic-Statistic Combined Ensemble Prediction and Impact Factors on China’s Summer Precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3762,https://doi.org/10.5194/egusphere-2024-3762, 2024
Short summary
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary

Cited articles

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999.
Baines, M. J., Hubbard, M. E., and Jimack, P. K.: A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries, Appl. Numer. Math., 54, 450–469, https://doi.org/10.1016/j.apnum.2004.09.013, 2005.
Baines, M. J., Hubbard, M. E., Jimack, P. K., and Mahmood, R.: A moving-mesh finite element method and its application to the numerical solution of phase-change problems, Commun. Comput. Phys., 6, 595–624, 2009.
Baines, M. J., Hubbard, M. E., and Jimack, P. K.: Velocity-based moving mesh methods for nonlinear partial differential equations, Commun. Comput. Phys., 10, 509–576, https://doi.org/10.4208/cicp.201010.040511a, 2011.
Berger, M. J. and Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Physics, 53, 484–512, 1984.
Download
Short summary
We develop data assimilation techniques for numerical models using moving mesh methods. Moving meshes are valuable for explicitly tracking interfaces and boundaries in evolving systems. The application of the techniques is demonstrated on a one-dimensional model of an ice sheet. It is shown, using various types of observations, that the techniques predict the evolution of the edges of the ice sheet and its height accurately and efficiently.
Share