Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 24, issue 3
Nonlin. Processes Geophys., 24, 515–534, 2017
https://doi.org/10.5194/npg-24-515-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nonlin. Processes Geophys., 24, 515–534, 2017
https://doi.org/10.5194/npg-24-515-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Sep 2017

Research article | 05 Sep 2017

Data assimilation for moving mesh methods with an application to ice sheet modelling

Bertrand Bonan et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Mirena Feist-Polner on behalf of the Authors (29 May 2017)  Author's response
ED: Referee Nomination & Report Request started (30 May 2017) by Olivier Talagrand
RR by Stephen Cornford (17 Jun 2017)
RR by Anonymous Referee #1 (05 Jul 2017)
ED: Publish subject to minor revisions (further review by Editor) (06 Jul 2017) by Olivier Talagrand
AR by Nancy Nichols on behalf of the Authors (19 Jul 2017)  Author's response    Manuscript
ED: Publish as is (25 Jul 2017) by Olivier Talagrand
Publications Copernicus
Download
Short summary
We develop data assimilation techniques for numerical models using moving mesh methods. Moving meshes are valuable for explicitly tracking interfaces and boundaries in evolving systems. The application of the techniques is demonstrated on a one-dimensional model of an ice sheet. It is shown, using various types of observations, that the techniques predict the evolution of the edges of the ice sheet and its height accurately and efficiently.
We develop data assimilation techniques for numerical models using moving mesh methods. Moving...
Citation