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Abstract. We develop data assimilation techniques for nonlinear dynamical systems modelled by moving mesh methods.

Such techniques are valuable for explicitly tracking interfaces and boundaries in evolving systems. The unique aspect of these

assimilation techniques is that both the states of the system and the positions of the mesh points are updated simultaneously

using physical observations. Covariances between states and mesh points are generated either by a correlation structure function

in a variational context or by ensemble methods. The application of the techniques is demonstrated on a one-dimensional5

model of a grounded shallow ice sheet. It is shown, using observations of surface elevation and/or surface ice velocities, that

the techniques predict the evolution of the ice sheet margin and the ice thickness accurately and efficiently. This approach also

allows the straightforward assimilation of observations of the position of the ice sheet margin.

1 Introduction

From lava flows to tumour growth to water flooding, many time-evolving processes can be mathematically modelled as moving10

boundary problems. Predicting their evolution accurately requires not only the estimation of the state variables of the system

over a moving domain, but also the estimation of the location of the moving domain itself. In this paper we propose to combine

data assimilation with a moving mesh numerical model to estimate both the domain and the states of a moving boundary

problem. Genuine moving mesh methods use a fixed number of mesh points whose movement can be generated by various

techniques (Budd et al., 2009; Baines et al., 2011). The moving mesh method used here is based on conservation of local mass15

fractions (Baines et al., 2005, 2011; Partridge, 2013; Lee et al., 2015; Sarahs, 2016). The major advantage of our moving mesh

method is that only a small number of mesh steps is needed to accurately determine the positions of the boundaries, unlike

fixed or adaptive mesh methods (Berger and Oliger, 1984; Li et al., 2014; Cornford et al., 2013, 2016; Gladstone et al., 2010).

Our moving mesh method has been successfully applied to a number of moving boundary problems, including one- and two-

dimensional models of ice sheet flow, tumour growth and chemical spreading (Partridge, 2013; Bonan et al., 2016; Lukyanov20

et al., 2012; Lee et al., 2013).

Data assimilation (or DA) aims to combine available observations of a dynamical system with model predictions in order

to provide optimal estimates of the state of the system and an estimation of the uncertainty in these estimates. DA has been

applied successfully in various contexts and is routinely used in operational systems such as numerical weather prediction

systems (Lahoz et al., 2010; Blayo et al., 2014). In particular DA has already been used with fixed and adaptive grid models25
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in the context of moving boundary problems. In these cases estimates outside the moving domain are generally non-physical

and need to be reanalysed (Mathiot et al., 2012; Bonan et al., 2014). Furthermore, with fixed or adaptive grids, DA does not

provide an explicit estimate of the extent of the domain; this can be only done by interpolation. By combining DA with our

moving mesh numerical model we show here that the explicit extent of the domain can be estimated efficiently and accurately

and that non-physical estimates do not appear.5

Our approach is particularly relevant to the prediction of the dynamics of ice sheets and glaciers. Future evolution of ice sheet

boundaries is closely linked with sea level rise (Church et al., 2013) and ice sheets are now relatively well observed bodies

(Vaughan et al., 2013). Our moving-mesh numerical method for ice flow has already been validated for both 1-D and 2-D

models of ice sheets (Partridge, 2013; Bonan et al., 2016). In this paper we describe the application of data assimilation to the

moving mesh method and demonstrate the combined techniques using a one-dimensional moving mesh model of a grounded10

shallow ice sheet as described in Bonan et al. (2016). Although the model is relatively simple, there is no reason that these

techniques cannot be extended to much more complex problems.

We adapt here two popular DA schemes, a 3D-variational scheme (or 3D-Var, see e.g. Lorenc, 1986; Nichols, 2010) and an

Ensemble Transform Kalman Filter (or ETKF, see Bishop et al., 2001; Hunt et al., 2007), to estimate the state of an ice sheet

modelled by our moving mesh method (Bonan et al., 2016). The approach is validated by twin experiments using available15

classical surface observations (surface elevation and surface velocity, see Vaughan et al., 2013). Observations of the position

of the moving boundary (see e.g. Dyke and Prest, 1987 for observations of continental margins in palaeoglaciology) are also

assimilated using a straightforward observation operator. The paper is organised as follows: in Sect. 2 we recall the key points

of the moving point ice sheet model, in Sect. 3 we describe how to apply the 3D-Var and the ETKF methods for our state

estimation problem, and in Sect. 4 and 5 we validate our approach by performing several twin experiments before concluding20

in Sect. 6.

2 Moving-point ice sheet model

2.1 Ice sheet dynamics

We consider a single phase, radially-symmetric, grounded ice sheet (no floating ice), centred on the origin r = 0 of the radial

coordinates. The origin is called the ice divide.25

The geometry of the grounded ice sheet is described by its surface altitude, s(t,r), the ice thickness, h(t,r) and the altitude,

b(r), of the fixed bedrock on which the ice sheet lies (see Figure 1). These quantities are linked through the relation

s= b+h. (1)

The position of the edge of the ice sheet rl(t), also known as the ice sheet margin, is implicitly determined by the Dirichlet

boundary condition30

h(t,rl(t)) = 0 . (2)
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Figure 1. Section of a grounded radially-symmetrical ice sheet.

The evolution of an ice sheet is governed by the balance between the mass exchanges at the surface (snow precipitation and

surface melting) and the ice flow that carries the ice from the interior of the ice sheet towards its margins. This is summarised

by the mass balance equation

∂h

∂t
=m(t,r)− 1

r

∂ (rhU)

∂r
, (3)

where m(t,r) is the surface mass balance and U(t,r) is the vertically averaged horizontal component of the ice velocity in5

the sheet. In the numerical experiments (see Sect. 4 and 5) we use two different surface mass balances: a function that only

depends on the radius r and a more complex surface mass balance which depends on the atmospheric temperature that evolves

with the geometry of the ice sheet. Both surface mass balances are described in detail in Appendix A.

The velocity of the ice is derived using the Shallow Ice Approximation (Hutter, 1983), which leads to the following analytical

formulation of the vertically averaged horizontal component of the ice velocity U(t,r):10

U =− 2

n+ 2
A(ρi g)nhn+1

∣∣∣∣∂s∂r
∣∣∣∣n−1

∂s

∂r
, (4)

where s is given by Eq. (1) and the parameters involved in the Shallow Ice Approximation (SIA) are summarised in Table 1.

Since we consider only radially symmetrical ice sheets, a symmetry condition also holds at r = 0

U(t,0) = 0 and
∂s

∂r
(t,0) = 0 . (5)

2.2 Moving-point method15

The moving-point numerical method we use in this paper relies on the computation of point velocities and point locations. This

type of method belongs to the family of velocity-based (or Lagrangian) methods (Cao et al., 2003). Here the velocity of mesh

points is obtained by conserving local mass fractions (Baines et al., 2005, 2011). To calculate the velocity we first define the
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Table 1. Parameters involved in the computation of the vertically averaged horizontal component of the ice velocity (Eq. 4).

Parameter Value

n exponent of the creep relation 3

A coefficient of the creep relation 10−16 Pa−3.yr−1

ρi density of ice 910 kg.m−3

g gravitational acceleration 9.81 m.s−2

total volume of the ice sheet θ(t) as

θ(t) = 2π

rl(t)∫
0

rh(t,r)dr . (6)

Assuming that the flux of ice through the ice sheet margin is zero, its rate of change θ̇ depends only on the surface mass balance,

θ̇(t) = 2π

rl(t)∫
0

rm(t,r)dr . (7)5

We now define the relative mass fraction µ(r̂) relative to the moving point r̂(t). Since the density of ice ρi is assumed constant,

volume fractions and mass fractions are equivalent and

µ(r̂) =
2π

θ(t)

r̂(t)∫
0

rh(t,r)dr . (8)

The velocity of the moving point r̂(t) is defined implicitly by keeping µ(r̂) constant in time, that is, dµ(r̂)
dt = 0. By differenti-

ating Eq. (8) with respect to time using Leibniz’ integral rule, we obtain the velocity of every interior point10

dr̂

dt
= U(t, r̂(t)) +

1

r̂(t)h(t, r̂(t))

µ(r̂)

rl(t)∫
0

rm(t,r)dr−
r̂(t)∫
0

rm(t,r)dr

 . (9)

One of the points is dedicated to the static ice divide r = 0, while another point tracks the position of the margin rl(t), which

moves at the velocity (Bonan et al., 2016)

drl
dt

= U(t,rl(t))−m(t,rl(t))

(
∂h

∂r

)−1

. (10)

Once the velocity of each moving point has been obtained from Eq. (9) or Eq. (10), the moving points are moved in a Lagrangian15

manner using the explicit Euler scheme

r̂(t+ ∆t) = r̂(t) + ∆ t
dr̂

dt
. (11)
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The total mass θ(t) is updated in the same way using θ̇(t) from Eq. (7). Finally, the ice thickness profile is updated by

differentiating Eq. (8) with respect to r̂ giving

h(t, r̂(t)) =
θ(t)

π

dµ(r̂)

d(r̂2)
. (12)

2.3 Numerical model

From the equations detailed in Sect. 2.2, a finite difference algorithm is derived (see Bonan et al., 2016, for the full algorithm).5

The mesh consists of nr moving nodes with the positions

0 = r̂1 < r̂2 < .. . < r̂nr−1 < r̂nr = rl(t) . (13)

No further assumption is made on the spatial distribution of the moving nodes. At each node r̂i there is an associated ice

thickness hi and a fixed mass fraction µi. By construction, µ1 = 0, µnr
= 1 and the ice thickness at the ice sheet margin

hnr
= 0 .10

The user provides the initial mesh and the ice thickness at mesh points in order to initialise the numerical model. From these

quantities, the total mass and the mass fractions at the initial time are calculated by discretising Eq. (6) and Eq. (8) using the

following composite trapezoidal rule

θ =
π

2

nr−1∑
i=1

(hi +hi+1)(r̂2
i+1− r̂2

i ) , (14)

15

µ1 = 0, µi+1 = µi +
π

2θ
(hi +hi+1)(r̂2

i+1− r̂2
i ), i= 1, . . . ,nr − 1 . (15)

The mesh points are then evolved using a discrete form of equation (9) and the ice thickness is determined using a discrete

form of (12), with the mass fractions {µi} kept constant over a time step. Full details are given in Bonan et al, 2016.

3 State estimation of a system modelled with a moving mesh

We now recall the basics of data assimilation before explaining how to adapt the 3D-Var and the ETKF methods to our context.20

We then clarify the form of the observation operator for various types of observations that we assimilate.

3.1 Data assimilation

We consider data assimilation in a discrete dynamical system evolving in time. We denote by xk the vector of size nx describing

the state of the system at time tk. For example, in our numerical ice sheet model, ice thickness at mesh points are elements

of the state vector. The state xk is propagated forward in time to a time tk+1 by the nonlinear modelMk,k+1. Assuming the25

model is perfect, we have

xk+1 =Mk,k+1 (xk) . (16)
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Observations are available at times tk and are related to xk through the equation

yk =Hk (xk) + εk , (17)

where yk is a vector of pk observations taken at time tk, Hk is the, possibly nonlinear, observation operator and εk is the

observation error vector, which is assumed to be unbiased (zero mean) with covariance matrix Rk.

The objective of DA is to provide an optimal estimate xak of the system, called the analysis, by combining observations with5

information derived from the model. We consider in this paper two different DA schemes: a 3D-Var scheme and an ETKF.

3.1.1 3D-Var

The 3D-Var method (see e.g. Lorenc, 1986; Nichols, 2010) aims to provide the optimal estimate xak by minimising the cost

function

J (x) =
1

2

(
x−xbk

)T
B−1
k

(
x−xbk

)
+

1

2
(yk −Hk (x))

T
R−1
k (yk −Hk (x)) , (18)10

where xbk is a prior, or background, estimate of the state of the system (generally obtained by propagating forward in time the

previous analysis xak−1 with Eq. (16)). The error in the prior estimate is assumed to be unbiased with covariance matrix Bk .

We take the observation operatorHk to be linear around xbk, meaning that

Hk(x)≈ xbk +Hk

(
x−xbk

)
, (19)

where Hk is the linearisation of the observation operator about the background xbk. Under this assumption, the cost function15

has an explicit minimum

xak = xbk +Kk

(
yk −Hk

(
xbk
))
, (20)

where

Kk = BkH
T
k

(
HkBkH

T
k +Rk

)−1
. (21)

The analysis error covariance matrix can be estimated as20

Pe,k = (I−KkHk)Bk . (22)

In theory the true background error covariance matrix Bk should be updated at each time step. However, this process

is extremely expensive for real-time applications and, instead, we use a matrix with a simplified structure specified by the

user. We will see in the numerical experiments (Sect. 4 and 5) how setting Bk appropriately is essential in order to obtain good

estimates. Although the assimilation scheme we propose here to use with the moving mesh method is a variant of the traditional25

nonlinear 3D-Var method, it is in essence a variational method with a fixed form for the background covariance matrices and

we will refer to it as the 3D-Var method in the rest of the paper.
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3.1.2 Ensemble Transform Kalman Filter

The Ensemble Kalman Filter (EnKF) introduced by Evensen (1994) aims to approximate the Extended Kalman Filter us-

ing a Monte Carlo method. At each time step, the state of the system is represented by an ensemble of Ne realisations{
x

(i)
k , i= 1, . . . ,Ne

}
. The state estimate is given by the ensemble mean

xk =
1

Ne

Ne∑
i=1

x
(i)
k (23)5

and the state error covariance matrix by the ensemble covariance matrix

Pe,k =
1

Ne− 1
XkX

T
k (24)

where Xk is the anomalies matrix defined as

Xk =
[
x

(1)
k −xk , . . . , x

(Ne)
k −xk

]
. (25)

From the ensemble covariance matrix we can define the matrix Corr that contains an estimate of the correlation between the10

state variables to be

[Corr]i,j =
[Pe,k]i,j√

[Pe,k]i,i [Pe,k]j,j
, (26)

where [Corr]i,j and [Pe,k]i,j denote the entry in the i-th row and j-th column of Corr and Pe,k, respectively.

The forecast step propagates the ensemble from time tk to tk+1 with the nonlinear modelMk,k+1. For the analysis step we

use the efficient Ensemble Transform Kalman Filter (ETKF) introduced by Bishop et al. (2001) and follow the implementation15

of the algorithm given by Hunt et al. (2007).

The ETKF may generate ensembles of analyses with underestimated spread, which can lead to the divergence of the filter.

We use an inflation procedure (Anderson and Anderson, 1999) here to avoid this potential degeneracy. In the rest of the paper

the inflation factor is denoted by the parameter λinfla.

In the twin experiments performed in Sect. 4 and 5 we use a large number of ensembles to avoid producing spurious20

correlations in Pe,k. Therefore, no localisation has been employed in this paper.

3.2 Form of the state vector in the moving mesh case

Traditionally, in a data assimilation scheme the state vector includes all the physical variables of the given dynamical system.

For a fixed-grid numerical method the state variables are defined at fixed spatial positions. For example, for a grounded ice

sheet modelled with a fixed-grid method (and assuming every parameter is perfectly known), the unknown variables are the ice25

thicknesses located at known positions (see e.g. Bonan et al., 2014).

In contrast, the primary characteristic of a moving-point method is that the numerical domain evolves in time. The positions

of the nodes evolve jointly with the state variables according to the dynamical system equations and can be updated using the
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assimilation scheme. We therefore include the positions of the points in the state vector. As a consequence we define the state

vector x as follows

x =

 xh

xr

 with xh =


h1

...

hnr−1

 and xr =


r̂2

...

r̂nr

 . (27)

Estimates obtained by combining DA with this formulation of x using a moving-point numerical model provide more infor-

mation on the state of the system than if we were using a fixed-grid method.5

In particular, for an ice sheet model, this approach gives us a direct estimation of the position of the ice sheet margin that

cannot be obtained in fixed-grid methods without interpolation. In this case, we do not include in x the ice thickness at the

margin hnr
or the position of the ice divide r̂1 as both are fixed to zero. The DA schemes must, however, provide estimates

with strictly positive ice thicknesses hi, i= 1, . . . ,nr − 1, and a preserved order for node positions to respect the assumption

of the moving mesh scheme.10

This can be achieved with the 3D-Var method if the specified background covariance matrix Bk in Eq. (21) is prescribed

carefully. At time tk we decompose the background error covariance matrix B and the tangent linear matrix of the observation

operator H (we drop the time index k for clarity) as

B =

 Bh BT
rh

Brh Br

 and H =
(

Hh Hr

)
=
(

∂H
∂xh

(xf ) ∂H
∂xr

(xf )
)
, (28)

where Bh is the background error covariance matrix between the state variables, Br is the error covariance between mesh point15

locations and Brh includes the cross-covariances between errors in point locations and errors in state variables. The different

components of the state vector are then updated by the following analysis step

xah = xbh +
(
BhH

T
h +BT

rhH
T
r

)(
HBHT +R

)−1 (
y−H

(
xb
))

(29)

xar = xbr +
(
BrhH

T
h +BrH

T
r

)(
HBHT +R

)−1 (
y−H

(
xb
))

(30)

The most difficult step with this form of analysis is, in general, to set appropriately the cross-covariances in Brh that are20

needed for the update stage. For example, if either Hh or Hr is zero, a non-zero Brh matrix is the only way to correct

estimates of both xh and xr. However, we will see in the next section that in our assimilation systems for the ice sheet model,

the observation operator depends explicitly on both ice thickness variables and mesh node locations and, therefore, by setting

Brh to zero we can still obtain good estimates.

For the moving-point ice sheet model, the DA analysis step updates both ice thickness variables and node positions, but the25

total mass and mass fractions have to be updated as well, since they are not preserved by the analysis (and there is no reason

to preserve them). Therefore these quantities need to be ‘reset’ from the analysed state vector. This is easily done by using

Eq. (14) and Eq. (15). The adapted 3D-Var scheme is performed according to the following steps:

1. Calculate a forecast of the state vector xb by using the previous analysis solution to initialise the numerical moving point

model.30
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2. Use the analysis scheme (Eq. (29) and Eq. (30)) to produce the analysis xa.

3. From xa, calculate the analysed total mass θa and update the mass fractions µa using Eq. (14) and Eq. (15).

4. Evolve the analysis solution using the numerical moving point model to the next time where observations are available.

5. Repeat steps 2–5.

The adapted ETKF roughly follows the same path as 3D-Var except that, at step 1, we calculate the forecast for each member5

of the ensemble and, at step 3, the total mass and mass fractions have to be updated for each member of the ensemble (they are

different for each ensemble member). The background error covariance is also updated using the ensemble statistics. The strict

positivity of ice thickness variables and the order required in Eq. (13) for node positions are ensured by appropriately setting

the initial ensemble in the ETKF.

We remark that observations outside the domain of the background state at the time of the update cannot be assimilated. This10

is a limitation on both methods, but the ETKF has the advantage that it can take into account such observations if the domain

of the background of any member of the ensemble is large enough to include the reference domain.

3.3 Type of observations assimilated

In the twin experiments performed in Sect. 4 and 5, we use three different conventional types of observations of an ice sheet

system that are available in reality (see e.g. Vaughan et al., 2013). The first is direct observations of the ice thickness. Assuming15

that we have an observation of the ice thickness located at position ro, we define the associated observation operator as

H(x) =


hi +

ro− r̂i
r̂i+1− r̂i

(hi+1−hi) if r̂i ≤ ro ≤ r̂i+1

0 elsewhere ,
(31)

which is merely a piecewise linear interpolation operator. Note that H depends on both ice thickness variables hi and node

locations r̂i. We also assimilate observations of surface elevation and surface ice velocity. We again use a piecewise linear

interpolation operator as in Eq. (31). For observations of surface elevation, we have20

H(x) =


si +

ro− r̂i
r̂i+1− r̂i

(si+1− si) if r̂i ≤ ro ≤ r̂i+1

b(ri) elsewhere
(32)

with

si = hi + b(ri) . (33)

For observations of surface ice velocity, from a discretization of Eq. (4), we have

H(x) =


us,i +

ro− r̂i
r̂i+1− r̂i

(us,i+1−us,i) if r̂i ≤ ro ≤ r̂i+1

0 elsewhere
(34)25
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with

us,i =
1

2
A (ρig)3 sgn(snr

− snr−1)

∣∣∣∣∣h4
i

(
∂b

∂r
(ri)

)3

+
3

5

h5
i −h5

i−1

r̂i− r̂i−1

(
∂b

∂r
(ri)

)2

(35)

+
1

3

(
h3
i −h3

i−1

r̂i− r̂i−1

)2
∂b

∂r
(ri) +

27

343

(
h

7/3
i −h7/3

i−1

r̂i− r̂i−1

)3
∣∣∣∣∣∣ , (36)

except for us,1 = 0.

We may also assimilate observations of the position of the ice sheet margin. Using a moving point method allows the move-5

ment of boundaries to be tracked explicitly. In our context, the position of the ice sheet margin is represented by r̂nr
. As a

consequence the observation operator for such an observation is defined by

H(x) = r̂nr
. (37)

The operator is continuous and linear. This makes the assimilation of the position of the margin straightforward in comparison

with the same assimilation with a fixed grid model (see e.g. Lecavalier et al., 2014).10

4 Numerical experiments with an idealized model

To demonstrate the efficiency of our DA approach, we perform twin experiments with two different configurations. In this

section we consider experiments using an idealized system with a flat bedrock and the EISMINT surface mass balance detailed

in Eq. (A1).

4.1 Experimental design15

We first generate a model run with the moving point numerical model from known initial conditions. From this simulation

observations are created with added error sampled from a Gaussian distribution. This run is used as a reference to measure the

quality of the DA estimates.

We define the reference initial ice thickness profile by the function,

h(0, r) = h0

(
1−

(
r

rmax

)2
)3/7

0≤ r ≤ rmax (38)20

where h0 = 2000 m and rmax = 450 km. This function gives a smooth interior profile with a steep snout at the ice sheet margin

rmax. This is in compliance with the physics involved in the ice sheet model and provides an initial state with a margin that is

immediately in motion. The reference run is obtained with an initial mesh of nr = 28 points evenly spaced between r̂1 = 0 and

r̂nr
= 450 km. The model time step is ∆t= 0.02 yr, the bed elevation b is fixed to zero and the surface mass balance used is

from the EISMINT benchmark (Eq. (A1)). The experiment starts at time t= 0 yr and ends at t= 2000 yr. The evolution of the25

reference ice thickness profile can be seen in Fig. 2.
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Figure 2. Ice thickness profile from the reference run in a simple case (flat bedrock, EISMINT surface mass balance from Eq. (A1)). The

initial state follows the profile of Eq. (38) with h0 = 2000 m and rmax = 450 km. The reference run is obtained with an initial mesh of

nr = 28 points evenly spaced between r̂1 = 0 and r̂nr = 450 km.

From the reference run we generate observations of ice thickness and the position of the ice sheet margin at times t1 = 500 yr

and t2 = 1500 yr. Observations of thickness are taken at each point except at the margin (so a total of 27 observations) with

added random noise from the Gaussian distribution N (0,σoh
2), σoh = 100 m. For the position of the margin, the observational

noise is sampled from N (0,σor
2), σor = 10 km.

To evaluate the performance of our DA approaches, we compare the estimated ice thickness profiles with their reference5

counterparts. This is mostly done graphically. We also study the quality of the estimates of two variables: the ice thickness at

the ice divide r = 0 and the position of the ice sheet margin.

4.2 Updating the ice thickness only

We begin by studying the performance of the DA schemes in the idealized configuration where we assimilate observations of

ice thickness only. We start with an experiment using the 3D-Var algorithm in which only the ice thickness is updated at the10

assimilation times and the mesh point positions are not updated.

The background state is defined as follows:

– at initial time, the background ice thickness profile is set using the same profile as the reference (Eq. (38)) but with

h0 = 2100 m (+5 % error from the reference) and rmax = 472.5 km (also +5 % error),

– the background mesh consists of nr = 28 points, evenly spaced between r̂1 = 0 and r̂nr
= 472.5 km at initial time,15

– the model time step is ∆t= 0.02 yr.

As we are using a 3D-Var scheme in this experiment, the background error covariance matrix B needs to be prescribed at

both times of assimilation (t1 = 500 yr and t2 = 1500 yr). In this first experiment we only update ice thickness variables so we
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set the background error covariance matrix for point positions Br and the cross-covariance matrix Brh to zero. We define Bh

the covariance matrix for ice thickness variables as

Bh = D
1/2
h ChD

1/2
h (39)

with Dh the diagonal variance matrix and Ch the correlation matrix. Dh is simply set to σbh
2
Inr−1 with σbh = 100 m. The

background error correlation structure follows a Second-Order AutoRegressive (SOAR) distribution with5

[Ch]i,j =

(
1 +
|r̂bi − r̂bj |
Lh

)
exp

(
−
|r̂bi − r̂bj |
Lh

)
i, j = 1, . . . ,nr − 1 , (40)

where [Ch]i,j denotes the entry in the i-th row and j-th column of Ch, r̂bi the location of the i-th mesh point of the background

state at the time of assimilation and Lh is some correlation length scale to be fixed. The SOAR function is preferred to a

Gaussian structure as the matrix Ch is better conditioned for inversion in that case (Haben et al., 2011). We set Lh to 100 km.

This definition of B takes into account the flow dependency of the moving point locations, making our approach adaptive.10

Figure 3 displays Bh at assimilation times t1 = 500 yr and t2 = 1500 yr. As the distance between grid points increases in time

in the experiment, the covariances tend to reduce between the two assimilation times. For example the covariance between the

location of points r̂b1 and r̂bnr−1 is reduced from [Bh]1,nr−1 = 530.7 at t1 = 500 yr to [Bh]1,nr−1 = 446.6 at t2 = 1500 yr. In

addition we note decreased correlations for points around the centre of the mesh due to a greater distance between adjacent

nodes in the centre of the grid than at the boundaries.15
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Figure 3. Covariance matrices for ice thickness variables Bh used by the 3D-Var at assimilation times t1 = 500 yr and t2 = 1500 yr.

Covariances between variables at distant locations tend to reduce between the two assimilation times. The distance between adjacent nodes

also tends to be greater in the centre of the mesh than at the boundaries, leading to a decreasing covariance at t2 = 1500 yr in this area.

The formulation of B forces the re-computation of the matrix at every assimilation time. This is a limiting factor of our

3D-Var approach, especially for high dimensional systems, making it cost more than traditional 3D-Var for fixed-grid models

in which B is only computed once. Nevertheless, our experiments demonstrate that this formulation of the background error
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Figure 4. Left: 3D-Var analysis at time t= 500 yr compared with the forecast and the reference when we update only ice thickness variables.

The ice thickness profile is improved, especially between r = 100 km and r = 400 km. Centre: Evolution of the position of the margin with

time. Even if the position of the margin is not directly updated, the trajectory of the margin is corrected as a result of the ice thickness update.

Right: Evolution of the position of grid points with time. The trajectory of each grid node is corrected after each analysis, as is the margin.

covariance matrix ensures that the moving-point framework produces positive estimates of ice thickness variables and a smooth

interior profile in accordance with the physics of the system.

We now evaluate the quality of the estimates. Fig. 4 (left) displays the analysed ice thickness profile compared to its back-

ground and reference counterparts at the first time of assimilation t1 = 500 yr. The picture shows that the ice thickness profile

in the interior of the ice sheet is substantially improved by DA. For example the absolute error in ice thickness at the ice divide5

(r = 0) is reduced from 100 m to 58.3 m by the 3D-Var analysis. Results are even better between r = 100 km and 400 km.

Since we only update xh in this experiment, the position of the margin is not modified by our update. Nevertheless, by cor-

recting the interior of the ice sheet, the forecast of the migration of the margin is improved (see central and right picture after

t= 500 yr, Fig. 4), and at the second assimilation time, t= 1500 yr, the absolute difference between the position of the margin

before analysis and its reference position is only 5.6 km (instead of 15.9 km without DA).10

4.3 Updating ice thickness variables and node positions

We now use 3D-Var to update both ice thickness variables and node locations. The definitions of Bh and Brh remain the same

as in the previous experiment, but we set the covariance matrix for node positions Br to be Br = D
1/2
r CrD

1/2
r with Dr the

diagonal variance matrix and Cr a correlation matrix. The matrix Dr is set to to σbr
2
Inr−1 with σbr = 22.5 km and Cr follows

a SOAR distribution with15

[Cr]i,j =

(
1 +
|r̂bi+1− r̂bj+1|

Lr

)
exp

(
−
|r̂bi+1− r̂bj+1|

Lr

)
, i, j = 1, . . . ,nr − 1 , (41)

where Lr is a correlation length scale fixed to 100 km. The correlation matrix Br constrains the movement of the assimilated

mesh points and the correlation function used in the formulation of Br is selected to ensure that the order of the points defined
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by Eq. (13) is preserved by the 3D-Var algorithm. Since the distance between nodes evolves in time, it is even more important

than in the previous case to use a flow-dependent background error covariance matrix B.
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Figure 5. Left: 3D-Var analysis at time t= 500 yr compared with the forecast and the reference when we update ice thickness variables

and node locations. In contrast to the results shown in Fig. 3, the ice thickness profile is substantially improved close to the margin. Centre:

Evolution of the position of the margin with time. The estimates are of very good quality even if the margin is not observed directly. Right:

Evolution of the position of mesh points with time. The trajectory of each node is corrected by each analysis, as is the margin.

Results for the ice thickness profile are shown in Fig. 5. Overall estimates obtained with updating both ice thickness variables

and node positions are better than when we update only ice thickness variables. The absolute error in ice thickness at the ice

divide (r = 0) is reduced from 100 m to 60.2 m by the 3D-Var analysis at time t1 = 500 yr, which is similar to the previous5

experiment. However, we now obtain at t1 = 500 yr a very accurate ice thickness profile close to the margin and its estimated

position has an absolute error of only 0.2 km. This shows that the estimated position of the ice sheet margin can be accurately

corrected by only using standard observations (no observation of the position of the margin is involved in this experiment). At

the second time of assimilation at t2 = 1500 yr, the estimate is degraded, however, as a result of using fixed variances in the

matrix B. This behaviour is discussed further in Sect.4.5.10

The 3DVar method provides information on the analysis covariance structures for ice thickness variables and mesh point

positions. In Fig. 6 we display the estimated standard deviations and the error correlation matrix Corr (see Eq. (26)) obtained

at time t= 500 yr. using the estimated analysis error covariance matrix Pe,k given by Eq. (22). We see that the 3DVar method

produces decreased standard deviations and correlation length scales for ice thickness variables close to the ice divide and

decreased standard deviations and correlation length scales for node locations close to the margin. The 3DVar method also pro-15

duces strong anti-correlations between ice thickness variables and node positions, meaning that in order to fit the observations

where the ice thickness variables become larger, the associated nodes need to retreat.

In these experiments we have specified a fixed form for the background error covariance matrices, which are defined in terms

of the positions of the nodes. We next show, using an ETKF, how the covariances are expected to evolve in time with the model

dynamics and the effects of this on the assimilation.20
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Figure 6. Standard deviations and correlation matrix Corr estimated from the 3DVar analysis at time t= 500 yr when we use only observa-

tions of ice thickness. Auto-correlations between ice thicknesses are located in the top left corner of Corr, auto-correlations between node

positions in the bottom right corner. The rest of the matrix depicts the cross-correlations.

4.4 Using an ETKF

We now perform the same experiment as before except that we now use an ETKF. The key question is how to generate the

initial ensemble composed of Ne members. The easiest way is to add noise to a background state sampled from a Gaussian law

N (0,B) with B the background error covariance matrix defined in Eq. (28).

In this experiment we generate an initial ensemble of Ne = 200 members using:5

– the same background state used in the experiments detailed in Sect. 4.2 and 4.3,

– Bh defined by Eq. (39) with the diagonal matrix Dh = σ2
h Inr−1, σbh = 100 m, Ch defined by Eq. (40), Lh = 100 km,

– Br taken as D1/2
r CrD

1/2
r with Cr defined by Eq. (41) with Lh = 100 km and the diagonal matrix Dr defined as

[Dr]ii = min
(
σbr,α r̂i

)
i= 1, . . . ,nr − 1 (42)

with σbr = 22.5 km and α= 0.2,10

– Brh set to zero.

Note that the definition of B is slightly different from the previous experiment as we choose different diagonal variances. The

change is because of the high probability of generating useless initial meshes with negative radii using Dr = σbr
2
Inr−1 as the

background standard deviation σbr is larger than the background position of the first points (for example r̂b2 = 17.5 km). To

avoid this problem we have decided just to reduce the variance for the position of points near the ice divide using Eq. (42).15

The new ensemble mean has, at the initial time, an estimated position of the margin of 472.9 km with an estimated standard

deviation of 22.8 km (where the true value at t= 0 a is 450 km).

We do not use any inflation in this experiment (λinfla = 1).
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Results are summarised in Fig. 7. At the first time of assimilation t1 = 500 yr, the analysis step corrects the ice thickness

profile well. The estimate of the ice thickness at r = 0 is of the same quality as in the previous experiments (absolute error

of 46.9 m) and the estimate of the position of the margin is reduced from 483.1 km (forecast mean with estimated standard

deviation 18.9 km) to 468.8 km (analysis mean with estimated standard deviation 7.1 km). The estimate obtained by the ETKF

is in accordance with the true value (which is within the ensemble spread) and the absolute error of 7.5 km is of the same5

order as the estimated standard deviation. The rest of the experiment exhibits the same quality in terms of recovering the ice

thickness profile.
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Figure 7. Left: ETKF analysis at time t= 500 yr compared with the forecast and the reference. The ice thickness profile is improved over

the whole domain and the reference profile is within the ensemble spread. Centre: Evolution of the ice thickness at r = 0 with time. The

estimates are of very good quality and the estimates seem to converge towards the reference value at the end of the study. Right: Evolution of

the position of the margin with time. The ETKF provides consistent estimates and the reference value is always within the ensemble spread.
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Figure 8. Standard deviations and correlation matrix Corr estimated from the ETKF analysis ensemble at time t= 500 yr when we use

only observations of ice thickness. Auto-correlations between ice thicknesses are located in the top left corner of Corr, auto-correlations

between node positions in the bottom right corner. The rest of the matrix depicts the cross-correlations.
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The ETKF provides information on the covariance structures for ice thickness variables and mesh point positions. We display

estimated standard deviations and an estimate of the correlation matrix Corr (see Eq. (26)) in Fig. 8 for the analysis ensemble

at time t= 500 yr. The ETKF produces decreased standard deviations and correlation length scales for ice thickness variables

close to the ice divide. For example the standard deviation of the ice thickness at the ice divide is more than halved by the

analysis, from 97.4 m before analysis to 41.6 m. Decreased standard deviations and correlation length scales are also obtained5

for node locations but close to the margin in this case. The standard deviation for the position of the margin is reduced from

18.9 km to 7.1 km by the analysis. The ETKF also produces strong anti-correlations between ice thickness variables and node

positions, meaning that where ice thickness variables become larger associated nodes need to retreat to fit the observations of

ice thickness.

4.5 Comparing 3D-Var and the ETKF10

We now compare the results from applying the 3D-Var and ETKF assimilation schemes in the case where we observe only the

ice thickness. We focus on the accuracy of the estimated ice thickness at r = 0 and the position of the margin.

Figure 9 shows the evolution of the absolute errors in the estimates of the ice thickness at r = 0 and in the position of the

margin for the ETKF and for 3D-Var, with and without node updates. All three methods provide improved estimates at the first

analysis time (t1 = 500 yr), leading to good forecasts up to the next assimilation time. We find that the ETKF tends to perform15

better than the variational approach and that for 3D-Var the estimates obtained by updating both ice thickness variables and

node positions are generally better than those where only ice thickness variables are updated.
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Figure 9. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin when we observe

only the ice thickness. We compare the absolute errors obtained when we use 3D-Var without and with correction of the position of grid

nodes and when we use an ETKF.

For 3D-Var without node updates, the analysis at the second time of assimilation (t2 = 1500 yr) of the ice thickness at r = 0

is unfortunately degraded relative to the forecast, but the estimated position of the margin is still improved by the second

analysis. In the case where ice thickness and nodes are updated, the estimates of both ice thickness at r = 0 and the position20

of the margin are degraded at the second time of assimilation. This weakens the confidence in the forecast and we partially
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lose what we had gained from the previous analysis. This effect would not necessarily appear with another set of observations

of thickness, but the experiment shows the sensitivity of 3D-Var to current observations resulting from the dependence of the

prescribed covariance matrix B on the positions of the mesh nodes.

Figure 10. The background error covariance matrices used by the 3DVar and ETKF methods to produce the analysis at time t= 1500 yr.

Using the ETKF assimilation scheme, where the covariance matrix fully evolves in time, is seen to improve the overall

estimates. At each assimilation time, the errors in the estimated ice thickness and the position of the margin are decreased.5

Notably we do not observe any degrading of the estimates at the second time of assimilation. This improvement can be

attributed to the better background forecast produced by the ETKF at each assimilation time.

In Figure 10 we display the background error covariance matrices used by the 3DVar and ETKF methods to produce the

analysis at time t= 1500 yr. At the previous assimilation time t= 500 yr., the analysis covariances produced by both methods

are very similar, as seen in Figs. 6 and 8. However, because the 3DVar error covariance matrix has a fixed form, the background10

covariance matrix used by 3DVar at the assimilation time t= 1500 yr. has not changed significantly. In contrast it can be seen

that the ETKF background error covariance has fully evolved and contains much more information than the 3DVar error

covariance matrix. This explains the better ability of the ETKF to provide accurate estimates in the context of the moving point

model. Propagating the background error covariances using the ensemble statistics ensures that the ETKF is a more reliable

scheme than 3D-Var. This improvement has a computational cost, however, as we now need to run the model Ne times instead15

of once for 3D-Var.

4.6 Assimilating observations of the position of the margin

In this section we perform the same experiments as previously, but we now assimilate not only the same observations of ice

thickness as before but also observations of the position of the margin. We consider only the case of 3D-Var with grid update

and the ETKF.20

Absolute errors for the estimates of the ice thickness at r = 0 and the position of the margin are shown in Fig. 11. In both

cases assimilating observations of the position of the margin is beneficial to our estimates of the margin and of the ice thickness
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profile close to the margin. For example the estimated position of the margin at time t = 500 yr has an absolute error of 4.2 km

for the ETKF (compared to 7.5 km previously). Not surprisingly it does not change the results for the ice thickness at r = 0.
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Figure 11. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin when we observe

the ice thickness and the position of the margin. We compare the absolute errors obtained when we use 3D-Var with correction of the position

of grid nodes and when we use an ETKF. In both experiments the results are improved with respect to the position of the margin (compared

to results detailed in Fig. 9). No improvement (nor degradation) is observed for the ice thickness at r = 0.

Adding observations of the position of the margin in the data assimilation system reduces the estimated standard deviations

obtained with the ETKF for variables close to the margin. For example, the estimated standard deviation for the position of the

margin is now 5.8 km instead of 7.1 km. Not surprisingly it has no influence on the standard deviation for variables close to5

the ice divide. The estimated correlation structure (not shown) is also not modified by adding observations of the position of

the margin in the DA system.

5 Numerical experiments with an advanced configuration

In this section we consider experiments using a more realistic configuration with a non-flat bedrock and an advanced surface

mass balance, detailed in Appendix A2.10

5.1 Experimental Design

We generate observations from a new reference run. We use a non flat fixed bedrock whose elevation is defined by the equation

b(r) = 1000m− 1400m ·
( r

1000km

)2

+ 700m ·
( r

1000km

)4

− 120m ·
( r

1000km

)6

. (43)

The reference run is generated from a realistic initial state obtained with the following steps:

– Start with an ice sheet profile following Eq. (38) with h0 = 2000 m, rmax = 300 km and nr = 21 computational mesh15

points evenly spaced between r̂1 = 0 and r̂nr
= 300 km.
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– Run the numerical model with a fixed climate forcing, as defined in Eq (A4), where Tclim = 4 oC until reaching the steady

state (a 30,000 yr run with a ∆t= 0.01 yr time step).

– From this steady state, run the numerical model with a linearly warming climate forcing from Tclim = 4 oC with

dTclim/dt= 0.02 oC.yr−1 for an extra 100 yr (∆t= 0.01 yr). The state obtained at the end of the run is the initial state

(see Fig. 12).5
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Figure 12. Initial state used to obtain a 20-year reference run under a warming climate as detailed in Sect. 5.1 with nr = 21 grid points and

a non-flat bed.

The reference is obtained by running the model over 20 years from the initial state with a time step ∆ t= 0.01 yr and the

same linearly warming climate forcing as defined in Appendix A.2 (with Tclim = 6oC at initial time t= 0 yr, and Tclim = 6.4 oC

at t= 20 yr). Over the 20-year run, the geometry of the ice sheet stays relatively similar to the geometry of the initial state due

to the slow dynamics of the model. The ice sheet margin retreats from 1160.9 km to 1158.6 km and the ice thickness at the ice

divide increases by 1.5 m.10

We generate observations of surface elevation, surface ice velocity and the position of the ice sheet margin at times

t= 1,2, . . . ,10 yr from the reference run. The observations of the surface are taken at each point including the margin with

an added Gaussian noise (uncorrelated with standard deviation σos = 200 m). The observations of the surface ice velocity are

located at the mid-points between mesh points (so we have 20 observations of surface velocity). Observations are noised using

a Gaussian law (standard deviation σous
= 30m.yr−1, uncorrelated). For the position of the margin, the observational noise is15

sampled from N (0,σor
2) with σor = 50 km.

We compare the influence of the observations on the quality of the DA estimates and the subsequent forecasts for the 3D-Var

and ETKF methods. Again we focus on the two variables: the ice thickness at the ice divide r = 0 and the position of the ice

sheet margin.

5.2 Assimilating observations of surface elevation20

We begin by studying the performance of the DA schemes where we assimilate only observations of surface elevations.
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For 3D-Var the estimates are obtained using an initial background state defined as xb = 0.95xref(0) with a 5% smaller extent

than the reference state. The flow-dependent background error covariance matrix B is defined as in Eq. (28). The matrix Bh is

defined as in Eq. (39) with a SOAR matrix for Ch (σbh = 200 m, Lh = 240 km) and Br is defined with a SOAR matrix for Cr

(σbr = 60 km, Lr = 240 km). The matrix Brh is set to 0.

The ETKF uses an ensemble with 200 members. The initial ensemble is generated by adding to xb a random noise drawn5

from the Gaussian law N (0,B). The background covariance matrix B is defined as previously, except for Br for which we

still use a SOAR matrix for Cr (Lr = 240 km) but with variances decreased near the ice divide following Eq. (42) (σbr = 60 km

and α= 0.2). We tested different values for the inflation parameter λinfla; the best results were obtained with λinfla = 1.01.

Radius (in km)
0 500 1000

A
lti

tu
de

 (
in

 m
)

0

1000

2000

3000

4000

5000

Ice sheet geometry, t = 10 yr

bed elevation
reference
No Assim
ETKF mean
ETKF ensemble

Time (in yr)
0 5 10 15 20

Ic
e 

th
ic

kn
es

s 
(in

 m
)

3400

3600

3800

4000

4200

4400
Evolution ice thickness at r = 0

reference
No Assim
ETKF mean
ETKF ensemble

Time (in yr)
0 5 10 15 20

P
os

iti
on

 m
ar

gi
n 

(in
 k

m
)

1000

1050

1100

1150

1200

1250

1300
Evolution position margin

reference
No Assim
ETKF mean
ETKF ensemble

Figure 13. ETKF results for the advanced configuration where observations of surface elevation are assimilated over the first 10 years and

a forecast is made for 10 further years. Left: ETKF analysis at time t= 10 yr compared with the reference. Centre: Evolution of the ice

thickness at r = 0 with time. Right: Evolution of the position of the margin with time.

We first study the results obtained with the ETKF. At the end of the data assimilation window, t= 10 yr, the ice thickness

profile is retrieved well everywhere by the mean of the ensemble and the reference profile is within the ensemble spread (see10

Fig. 13). We note that the estimate of the ice thickness at the ice divide is improved by the first analysis. After time t= 7 yr,

however, the estimate is worsened by the analysis. This is because the ensemble spread is too small from that time onwards. This

can be fixed by taking a larger inflation parameter λinfla, but the estimates of other variables are then degraded. The estimated

position (mean) of the margin at t= 10 yr is 1158.0 km with an ensemble standard deviation of 3.1 km. In comparison to the

reference value at that time, r = 1159.9 km, we see that the ETKF with a large ensemble performs well. The quality of the15

estimates is also kept high during the forecast (from t= 10 yr to t= 20 yr). For example the absolute error on the position of

the margin is kept below 2.5 km over this time window.

With respect to the covariance matrix, the estimates seem to show a similar behaviour to those of the experiment detailed in

Sect. 4.4 using the ETKF where observations of ice thickness are assimilated (see Fig. 14), but with a larger correlation length

scale. The similarity can be explained by the similarity of the construction of the initial ensemble (the same structure for the20
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background covariance matrix B used to sample the Gaussian noise added to the background state) and by the similarity of the

observation operators for ice thickness and surface elevation.
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Figure 14. Standard deviations and correlation matrix Corr estimated from the analysis ensemble at time t= 10 yr in the advanced config-

uration where we observe surface elevation. The matrix Corr has the same structure as B defined by Eq. (28). Both standard deviations and

correlation structures are similar to Fig. 8.

We now compare the ETKF with results obtained with 3D-Var. Absolute errors in the ice thickness at r = 0 and in the

position of the margins are displayed for both cases in Fig 15. As in previous experiments, the ETKF performs better than

3D-Var. For example, the absolute error for the ice thickness at the ice divide stays below 60 m after t= 1 yr for the ETKF.5

By contrast, the absolute error for 3D-Var can be up to 125 m. The same statement remains valid for the absolute error in the

position of the margin, which stays below 8 km for the ETKF after t= 2 yr, yet can be up to 20 km for 3D-Var. We remark

that, since the background state is smaller than the reference state, 3D-Var does not assimilate all available data. Indeed the

algorithm cannot incorporate observations outside the background domain because of the form of the observation operator (see

Eq. (32)). This is not, however, the case for the ETKF, even if the ensemble mean has a smaller domain than the reference10

domain, since there is at least one member of the ensemble with a bigger domain than that of the reference. At the end both

approaches show a similar accuracy in the forecast state after time t= 10 yr, showing again the efficiency of both DA schemes.

5.3 Assimilating observations of surface velocity and position of the margin

We now consider assimilating observations of surface ice velocity and the position of the margin (if we only assimilate obser-

vations of surface ice velocity, the problem is undetermined).15

Again we want to compare the accuracy of 3D-Var and the ETKF using this new set of observations. We use the same

background state, the same structure for B and the same initial ensemble as before. The observation operator for surface

velocities is nonlinear (see Eq. (35)) and, even though the ensemble is large, inflation is necessary in this case. We take an

inflation of λinfla = 1.10. If the inflation is taken any larger in this example, the ETKF analysis produces ensemble members

with a non-ordered grid and the experiment cannot be pursued.20
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Figure 15. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin in the advanced

configuration where we assimilate surface elevations over the first 10 years. We compare the absolute errors obtained when we use 3D-Var

with the correction of the position of grid nodes and when we use an ETKF. The ETKF performs better than the 3D-Var for both variables.
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Figure 16. ETKF results for the advanced configuration where observations of surface ice velocity and the position of the margin are

assimilated over the first 10 years and a forecast is made for the following 10 years. Left: ETKF analysis at time t= 10 yr compared with

the reference. Centre: Evolution of the ice thickness at r = 0 with time. Right: Evolution of the position of the margin with time.

We first study the results obtained with the ETKF. At the end of the DA window, t= 10 yr, the ice thickness profile is

retrieved well everywhere by the mean of the ensemble, except near the ice divide r = 0 (see Fig. 16). This is due to the

relatively large uncertainty of surface velocity observations near the ice divide compared to the reference value at the same

point (here σous
= 30m.yr−1 and the reference surface velocity near the ice divide is below 0.1m.yr−1). The estimated (mean)

position of the margin at t= 10 yr, is 1144.7 km with an ensemble standard deviation of 12.1 km. This is an absolute error of5

15 km, so is worse than in the case where we observed the surface elevation, but assimilating these data still provides better

estimates than those obtained with no assimilation. This comment remains valid for the forecasts obtained after t= 10 yr since

estimates of the position of the margin are not degraded over the time window [10 yr, 20 yr].
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Estimates of the standard deviations and covariances, as shown in Fig. 17, differ from those of the previous experiment (see

Fig. 14 for comparison). We observe that the standard deviations for the node positions are smaller in the middle of the ice

sheet than in the previous experiment, but near the margin these are larger. The reduction in the standard deviation for ice

thickness variables close to the ice divide is less significant than in the previous experiment. This is due to the relatively large

uncertainty of surface velocity observations near the ice divide compared to the reference value at the same point. We remark5

that assimilating observations of surface ice velocity together with the position of the margin leads to an increased correlation

length scale for ice thickness variables and to a smaller correlation length scale for node positions compared to the previous

experiment. Finally the cross-covariances have smaller anti-correlations and positive correlations appear between ice thickness

variables in the interior of the ice sheet and between node positions close to the margin. These differ significantly from the case

where we assimilate observations of surface elevation as a result of the difference in observation operators.10
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Figure 17. Standard deviations and correlation matrix Corr estimated from the analysis ensemble at time t= 10 yr in the advanced con-

figuration where we observe surface ice velocity and the position of the margin. The matrix Corr has the same structure as B defined by

Eq. (28). Both standard deviations and cross-correlation structures are different from those shown in Fig. 14.

We finally compare the ETKF with results obtained with 3D-Var. Absolute errors in the ice thickness at r = 0 and in the po-

sition of the margins are displayed for both cases in Fig 18. As in previous experiments the ETKF performs better than 3D-Var

for the position of the margin. Nevertheless, 3D-Var still performs reasonably well in this nonlinear context. The forecast

trajectory of the margin after t= 10 a is improved by DA in both cases. This demonstrates again the robustness of our DA

approach in the context of an ice sheet modelled with a moving point numerical model.15

6 Conclusion and Prospects

In this paper we have adapted standard data assimilation techniques (a 3D-Var scheme and an ETKF) to estimate the state of

a 1-d ice sheet model using a moving point method. This is done by including both ice thickness variables and the location of

mesh nodes in the state vector. The only requirement is to ensure that the update does not produce a non-ordered moving mesh.

This can be achieved either by using an appropriate flow-dependent background covariance matrix with large correlations20
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Figure 18. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin when we observe

surface ice velocities and the position of the margin in the advanced configuration. We compare the absolute errors obtained when we use

3D-Var with the correction of the grid-node positions and when we use an ETKF. The ETKF performs better than the 3D-Var with respect to

the position of the margin, but 3D-Var gives better results for the ice thickness at r = 0 in this case.

between adjacent mesh points or by using an ensemble with the same properties. This combination has been validated with

various twin experiments assimilating classical available observations for an ice sheet (ice thickness, surface elevation and

surface ice velocity) and also observations of the position of the boundary. These twin experiments show in particular that:

– the form of the state vector allows the explicit tracking of boundary positions for moving boundary problems;

– this form also allows a straightforward and efficient assimilation of boundary positions (in this paper, the position of the5

margin);

– assimilating spatially distributed observations gives better estimates if node locations are updated in the analysis step;

– 3D-Var can have issues with assimilating observations if they are located outside the forecast domain; the ETKF can

overcome these issues if at least one member of the ensemble has its numerical domain large enough to include the

location of these observations;10

– the ETKF tends to provide better estimates than 3D-Var, mainly because of its capacity to provide flow dependent

statistical estimates of the background error covariances, but 3D-Var still provides satisfactory estimates;

– ETKF provides not only good state estimates but also interesting information on the structure of the covariances; these

are expected to be dominated by the statistics of the initial ensemble and the type of observations that are assimilated.

Whilst this paper uses a particular moving mesh method for the 1-d numerical model, our approach can be extended to any15

1-d moving boundary problem modelled with a moving mesh, assuming only that the ordering of the points must be maintained.

Moving mesh approaches are also suitable for modelling the evolution of 2-d moving boundary phenomena (Baines et al.,
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2009). The successful application of the moving mesh method to a 2-d model of an ice cap is presented in Partridge (2013).

Initial results on the assimilation of observations of ice thickness into the 2-d ice cap model are also given in Partridge (2013).

These results raise a number of issues concerning the approach needed for updating the nodal positions of the 2-d grid during

the assimilation step. Research on these issues is on-going.

Appendix A: Surface mass balances5

A1 EISMINT surface mass balance

For the twin experiments performed in Section 4 we use the simple constant-in-time surface mass balance employed in the

moving margin experiments of the EISMINT intercomparison project (Huybrechts et al., 1996):

m(r) = min
(
0.5myr−1,10−2 myr−1 km−1 · (450km− r)

)
(A1)

A2 Parametrised surface mass balance with feedback loop10

For the twin experiments performed in Section 5 we use a more complex surface mass balance parameterised as a function of

the surface atmospheric temperature Ts(t,r). This simple parametrisation was used in Bonan et al. (2014) in the context of ice

sheet model initialisation but with a fixed-grid model. The values of the different parameters involved in this parametrisation

are given in Table 2. The surface mass balance is the sum of positive accumulation Acc (snow precipitation) and negative

ablation Abl (melting) parametrised in Eq. (A2) and (A3).15

Acc(t,r) = Acc0 e
c0Ts (A2)

Abl(t,r) =

 Abl0

(
Ts−T0

T0

)2

if Ts > T0

0 otherwise

(A3)

The surface temperature depends on the altitude of the surface s, the distance from the origin and a climate temperature Tclim(t)

evolving in time according the relation20

Ts(t,r) = Tclim(t) +λr+ γ s(t,r) (A4)

This parametrisation aims to reproduce qualitatively a typical surface mass balance over an ice sheet and to include feedbacks

associated with the evolution of the geometry.
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Table 2. List of parameter values used for the parameterised surface mass balance

Parameter Value

Acc0 rate of accumulation 6 m.yr−1

Abl0 rate of ablation −5 m.yr−1

T0 minimum temperature for ablation −6 oC

c0 coefficient exponential law for accumulation 0.115 oC−1

λ longitudinal gradient of surface temperature
1

111000
oC.m−1

γ vertical gradient of surface temperature −0.0063 oC.m−1
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