
The paper presents experiments on assimilation of observations of the flow of an ice sheet. A 
specific, and original, feature of the paper is that, following an earlier work of the authors (Bonan et al., 
2016), the flow model is built on a moving mesh that allows description of the motion of the front of 
the ice sheet while avoiding unpleasant spatial interpolations. The experiments are of the identical twin 
type, in which the ‘observations’ that are assimilated are extracted from an earlier integration of the 
assimilating model. The authors use two different assimilation algorithms, one that they call ‘3D-Var’ 
(see comment 12 below about the use of that expression), and a standard Ensemble Transform Kalman 
Filter (ETKF). Both algorithms are basically successful, with a general advantage for the latter. 

 
The paper is well written and instructive, and I think its material is worth publishing, provided 

however a number of improvements are made. I give below my scientific comments and suggestions (in 
approximate order of decreasing importance), followed by editing remarks. 

 
 
Scientific comments 
 
1. There seems to be a basic contradiction in what the authors exactly do. It is said in subsection 

2.2 (Moving-point method) that the evolution of the node position ^r is determined by the condition that 
the corresponding mass fraction µ(^r) is conserved in time (Eq. 9, later discretized in the form 11). It is 
then said in the following subsection that the discretized mass fractions µi are updated in the temporal 
integration (l. 20, p. 8, and Eq. 15).  

The authors also write (eq. 26) that the state vector x of their model consists of the ice 
thicknesses hi at the points of the moving nodes, and of positions ^ri of those nodes There should then 
be, in agreement with the general equation (16), prognostic equations for both the hi’s and ^ri’s, There is 
one for ^ri’s, but none for the hi’s. On the contrary, h is defined diagnostically by eq. (12) from the 
profile of the mass fraction. 

I consider it is necessary for acceptance of the paper to first resolve that contradiction. I suspect 
that what is described in subsection 2.2 is actually not what is done in the numerical model. What is 
done must be precisely described. In particular, the prognostic equation for the thickness h (if there is 
any) must be explicitly mentioned. And, if the mass fractions are not conserved, by what is the 
evolution of the node positions ^ri determined ? 

 
2. The authors find that ETKF performs generally better than ‘3D-Var’ (one exception is 

actually shown on the left panel of Fig. 16; and, on Fig.13, the performance of both algorithms is the 
same at the end of the 10 years of assimilation). They give as an explanation of the better performance 
of ETKF the fact that the latter ‘remembers’ past observations (p. 17, l. 1, p. 24, l. 4). That really does 
not explain much. Actually ‘3D-Var’ also ‘remembers’ past observations as seen in many places in the 
paper (e.g., right panel of Fig. 16) where it produces forecasts that are much more accurate than what is 
obtained when no observations are used. 

It is possible to say more. The basic difference between ‘3D-Var’ and ETKF is that the former 
uses a background error covariance matrix B that is defined from the start and remains static in time, 
while the latter computes a matrix B from an ensemble of forecasts. Both algorithms evolve in time an 
estimate of the state of the observed system, but ETKF evolves in addition an estimate of the associated 
estimation error. That very likely leads to a better estimate of the matrix B and to a better analysis. 
Actually, it is very generally observed that assimilation algorithms that carry in time an estimate of the 
estimation error (such as 4D-Var and the various forms of Kalman Filter) perform better than 
algorithms that use a static estimate of the estimation error (as does 3D-Var). 

The importance of evolving in time an estimate of the estimation error must be stressed. 
And I suggest the authors look in more detail at the consistency of the ‘predicted’ and 

‘observed’ background. The authors state repeatedly that the reference lies in their ETKF experiments 
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within the range of the predicted ensemble. What about the ‘3D-Var’ ? It does not produce an explicit 
range, but it uses a known matrix B to which the observed background error can be compared. And how 
does the matrix B compare between the two algorithms ? Does it tend to be larger in either one of them? 
Such a comparison can fundamentally be made from Figs 3 and 7, but these figures are not in the same 
format (covariances in Fig. 3, correlations in Fig. 7). 

 
3. An important question in assimilation is the degree of stability of the observed system. That 

question is always present, but is particularly obvious in sequential assimilation, such as 3D-Var and 
ETKF. In sequential assimilation, the evolution of analysed state xa results of the combined influence of, 
on the one hand, the unstable modes of the system and of the possible model errors, which together tend 
to increase the estimation error, and on the other hand, of the stable modes and the introduction of 
observations at analysis time, which together tend to decrease the estimation error (there are also neutral 
modes, which have at most marginal effect on the evolution of the uncertainty). Were there instabilities 
in the present case ? The fact that the forecast error tends to remain constant after the end of the 
assimilations (see, e. g.,  Fig. 16) suggests that there are no instabilities in the system. That is not 
surprising for the motion of highly viscous fluid. But assimilation, in the case of a system which has no 
instabilities used with an error-free model (which is the case here) is relatively easy. Any assimilation 
algorithm, unless it is devised or implemented in a particularly unfortunate way, will normally be 
‘successful’ in that it will gradually move the analyzed state towards the reference from which 
observations are extracted. 

This seems to be the case here. That does not decrease the value of the paper for the study of ice 
sheet modelling. But it should be mentioned that the problem considered in the paper is relatively easy 
from the point of view of the assimilation, in that all difficulties that might result from the presence of 
instabilities in the system and/or of model errors are absent. 

 
4. A number of statements are made (for some as a way of explanation of a specific observed 

feature) which seem unjustified. 
 
- 4.1. P. 12, ll. 5-6, … this approach ensures that this moving-point framework produces 

positive estimates of ice thickness variables and a smooth interior profile … What is the evidence, 
particularly as concerns the positiveness of thickness variables (I presume the question can arise only in 
the vicinity of the ice margin) ? 

 
- 4.2. P. 13, ll. 15-16, The formulation of Br aims to ensure that the order between mesh points 

defined by Eq. (13) is preserved by the 3D-Var algorithm. Since the distance between nodes evolves in 
time, it is even more important than in the previous case to use a flow-dependent background error 
covariance matrix B. In what does the particular formulation of Br helps preserving the order of mesh 
points ?  

 
- 4.3. P. 16, ll. 17-18. … the experiment shows the sensitivity of 3D-Var to current observations 

because of the use of fixed variances in the prescribed covariance matrix B. I am not sure to understand 
what you mean. But if you imply that the increase of error at the second analysis time is due to the use 
of fixed variances, that is unfounded. 

 
- 4.4. P. 20, l. 4, This is because the ensemble spread is too small in that area. The middle panel 

of Fig. 11 does not show a smaller ensemble spread beyond year 7. 
 
- 4.5. P. 21, l. 10, and p. 22, l. 1, The observation operator for surface velocities is nonlinear 

(…). For that reason, even if the ensemble is large, inflation is mandatory for the ETKF. Is there any 
objective evidence for a link between the nonlinearity of the observation operator and the need for 
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inflation of the analyzed ensembles ? I suggest you only mention that you have observed that, even 
though the ensembles are large, inflation is necessary in the present case. 

 
 
5. The authors write in the conclusion (p. 24, ll. 1-3) 3D-Var can have issues with assimilating 

observations if they are located outside the forecast domain; the ETKF can overcome these issues if at 
least one member of the ensemble has its numerical domain large enough to include the location of 
these observations. The problem raised by observations that are located outside the background domain 
is hardly discussed in the main text (from p. 20, l. 19 to p. 21, l. 1). If they consider that aspect to be 
important enough to be mentioned in the conclusion, the authors must discuss it at more length in the 
main text, and not wait the presentation of the ‘advanced configuration’ experiments to discuss it. 

I first mention that what I understand of the first line of p. 21 would be better expressed as … 
since it is observed that there is always at least one member of the ensemble whose domain is larger 
than the domain of the background (I think that, contrary to what the authors write, it is the background 
that matters here, not the reference). 

Second, what is done in 3D-Var with those outlying observations ? Are they simply ignored ? 
And, in ETKF, even if one or more ensemble members can accommodate those observations, 

but not all, how is the ensemble increased back after the analysis to its full dimension Ne ? 
 
6. Eq. (34-35). I understand that equation originates from Eq. (4). Say it. And give explanations 

(or at least a reference) for the complicated expression on the right-hand side. 
 
7. Subsection 5.3. The errors on the observations of surface velocity and of position of the 

margin are apparently not mentioned. 
 
8. P. 23, caption of Fig. 16, last two lines. You write The ETKF performs better than the 3D-

Var with respect to the position of the margin, but 3D-Var seems to give better results for the ice 
thickness at r = 0. Do you imply the better performance of ETKF on the left panel of the figure is real, 
but the better performance of 3D-Var on the right panel might be only apparent ? 

 
9. Figures 4 and 5. The left panel shows results at the first analysis time t1 = 500 yr. It would be 

preferable to show also the analogous results at the second time t2 = 1500 yr. 
 
10. Since the surface altitude s(t, r) is known, there is no need for making a distinction between 

ice thickness and surface elevation (Eqs 30 and 31). These observations are exactly equivalent. 
 
 
Editing comments 
 
11. Literally speaking, the expression 3D-Var is inappropriate for the paper. The physical 

problem under consideration is one-, not three-dimensional, and the authors mention nowhere that they 
have used an explicit variational algorithm for determining the analysed state xa. Now, their algorithm 
possesses a property which, owing to a pure language convention in the trade of assimilation, is 
associated with the expression 3D-Var. Namely, that is uses a time-invariant background error 
covariance matrix B (that convention originates from ECMWF, which developed a 3D-Var as a 
preliminary step towards its full-fledged 4D-Var).  I suggest that the authors, if they want to keep the 
expression 3D-Var, say clearly that their algorithm is neither 3D nor variational, and use a different 
notation (‘3D-Var’, 3D-Var-like, …) 

 
12. The right-hand side of Eq. (21) should read  Bk Hk

T (…) (and not Bk Hk) 
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13. P. 18, l.10. You mention Tclim. Reference should be made here to Eq. (A4). 
 
14. Eq. (A3). I think the unit for T is kelvin. Say it.  
 


