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Abstract. We develop data assimilation techniques for non-
linear dynamical systems modelled by moving mesh meth-
ods. Such techniques are valuable for explicitly tracking in-
terfaces and boundaries in evolving systems. The unique as-
pect of these assimilation techniques is that both the states of
the system and the positions of the mesh points are updated
simultaneously using physical observations. Covariances be-
tween states and mesh points are generated either by a cor-
relation structure function in a variational context or by en-
semble methods. The application of the techniques is demon-
strated on a one-dimensional model of a grounded shallow
ice sheet. It is shown, using observations of surface elevation
and/or surface ice velocities, that the techniques predict the
evolution of the ice sheet margin and the ice thickness accu-
rately and efficiently. This approach also allows the straight-
forward assimilation of observations of the position of the ice
sheet margin.

1 Introduction

From lava flows to tumour growth to water flooding, many
time-evolving processes can be mathematically modelled as
moving boundary problems. Predicting their evolution accu-
rately requires not only the estimation of the state variables
of the system over a moving domain but also the estima-
tion of the location of the moving domain itself. In this pa-
per, we propose to combine data assimilation with a moving
mesh numerical model to estimate both the domain and the
states of a moving boundary problem. Genuine moving mesh
methods use a fixed number of mesh points whose move-
ment can be generated by various techniques (Budd et al.,
2009; Baines et al., 2011). The moving mesh method used

here is based on conservation of local mass fractions (Baines
et al., 2005, 2011; Partridge, 2013; Lee et al., 2015; Sarahs,
2016). The major advantage of our moving mesh method is
that only a small number of mesh steps are needed to accu-
rately determine the positions of the boundaries, unlike fixed
or adaptive mesh methods (Berger and Oliger, 1984; Li et al.,
2014; Cornford et al., 2013, 2016; Gladstone et al., 2010).
Our moving mesh method has been successfully applied to a
number of moving boundary problems, including one- and
two-dimensional models of ice sheet flow, tumour growth
and chemical spreading (Partridge, 2013; Bonan et al., 2016;
Lukyanov et al., 2012; Lee et al., 2013).

Data assimilation (DA) aims to combine available obser-
vations of a dynamical system with model predictions in or-
der to provide optimal estimates of the state of the system
and an estimation of the uncertainty in these estimates. DA
has been applied successfully in various contexts and is rou-
tinely used in operational systems such as numerical weather
prediction systems (Lahoz et al., 2010; Blayo et al., 2014). In
particular, DA has already been used with fixed and adaptive
grid models in the context of moving boundary problems. In
these cases, estimates outside the moving domain are gener-
ally non-physical and need to be reanalysed (Mathiot et al.,
2012; Bonan et al., 2014). Furthermore, with fixed or adap-
tive grids, DA does not provide an explicit estimate of the
extent of the domain; this can be only done by interpolation.
By combining DA with our moving mesh numerical model,
we show here that the explicit extent of the domain can be
estimated efficiently and accurately and that non-physical es-
timates do not appear.

Our approach is particularly relevant to the prediction of
the dynamics of ice sheets and glaciers. Future evolution
of ice sheet boundaries is closely linked with sea level rise
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(Church et al., 2013) and ice sheets are now relatively well-
observed bodies (Vaughan et al., 2013). Our moving mesh
numerical method for ice flow has already been validated for
both 1-D and 2-D models of ice sheets (Partridge, 2013; Bo-
nan et al., 2016). In this paper, we describe the application of
data assimilation to the moving mesh method and demon-
strate the combined techniques using a one-dimensional
moving mesh model of a grounded shallow ice sheet as de-
scribed in Bonan et al. (2016). Although the model is rela-
tively simple, there is no reason that these techniques cannot
be extended to much more complex problems.

We adapt here two popular DA schemes, a 3-D varia-
tional scheme (or 3D-Var; see, e.g. Lorenc, 1986; Nichols,
2010) and an ensemble transform Kalman filter (ETKF; see
Bishop et al., 2001; Hunt et al., 2007), to estimate the state
of an ice sheet modelled by our moving mesh method (Bo-
nan et al., 2016). The approach is validated by twin experi-
ments using available classical surface observations (surface
elevation and surface velocity; see Vaughan et al., 2013). Ob-
servations of the position of the moving boundary (see, e.g.
Dyke and Prest, 1987 for observations of continental margins
in palaeoglaciology) are also assimilated using a straightfor-
ward observation operator. The paper is organised as follows:
in Sect. 2 we recall the key points of the moving point ice
sheet model, in Sect. 3 we describe how to apply the 3D-Var
and the ETKF methods for our state estimation problem and
in Sects. 4 and 5 we validate our approach by performing
several twin experiments before concluding in Sect. 6.

2 Moving point ice sheet model

2.1 Ice sheet dynamics

We consider a single-phase, radially symmetric, grounded
ice sheet (no floating ice), centred on the origin r = 0 of the
radial coordinates. The origin is called the ice divide.

The geometry of the grounded ice sheet is described by
its surface altitude, s(t, r), the ice thickness, h(t,r) and the
altitude, b(r), of the fixed bedrock on which the ice sheet lies
(see Fig. 1). These quantities are linked through the relation

s = b+h . (1)

The position of the edge of the ice sheet rl(t), also known as
the ice sheet margin, is implicitly determined by the Dirichlet
boundary condition

h(t,rl(t))= 0 . (2)

The evolution of an ice sheet is governed by the balance
between the mass exchanges at the surface (snow precipita-
tion and surface melting) and the ice flow that carries the ice
from the interior of the ice sheet towards its margins. This is
summarised by the mass balance equation

∂h

∂t
= m(t,r)−

1
r

∂ (r hU)

∂r
, (3)

s(t,r)

h(t,r)

r = 0 r

Ice sheet
margin

z

r = r(t)
Ice divide

b(r)

l

Figure 1. Section of a grounded radially symmetrical ice sheet.

Table 1. Parameters involved in the computation of the vertically
averaged horizontal component of the ice velocity (Eq. 4).

Parameter Value

n exponent of the creep relation 3
A coefficient of the creep relation 10−16 Pa−3 yr−1

ρi density of ice 910 kg m−3

g gravitational acceleration 9.81 m s−2

where m(t,r) is the surface mass balance and U(t,r) is the
vertically averaged horizontal component of the ice veloc-
ity in the sheet. In the numerical experiments (see Sects. 4
and 5), we use two different surface mass balances: a func-
tion that only depends on the radius r and a more complex
surface mass balance which depends on the atmospheric tem-
perature that evolves with the geometry of the ice sheet. Both
surface mass balances are described in detail in Appendix A.

The velocity of the ice is derived using the shallow ice
approximation (Hutter, 1983), which leads to the following
analytical formulation of the vertically averaged horizontal
component of the ice velocity U(t,r):

U =−
2

n+ 2
A(ρi g)

nhn+1
∣∣∣∣∂s∂r

∣∣∣∣n−1
∂s

∂r
, (4)

where s is given by Eq. (1) and the parameters involved in
the shallow ice approximation (SIA) are summarised in Ta-
ble 1. Since we consider only radially symmetrical ice sheets,
a symmetry condition also holds at r = 0

U(t,0)= 0 and
∂s

∂r
(t,0)= 0 . (5)

2.2 Moving point method

The moving point numerical method we use in this paper
relies on the computation of point velocities and point loca-
tions. This type of method belongs to the family of velocity-
based (or Lagrangian) methods (Cao et al., 2003). Here, the
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velocity of mesh points is obtained by conserving local mass
fractions (Baines et al., 2005, 2011). To calculate the veloc-
ity, we first define the total volume of the ice sheet θ(t) as

θ(t)= 2π

rl(t)∫
0

r h(t, r)dr . (6)

Assuming that the flux of ice through the ice sheet margin is
zero, its rate of change θ̇ depends only on the surface mass
balance,

θ̇ (t)= 2π

rl(t)∫
0

r m(t,r)dr . (7)

We now define the relative mass fraction µ(r̂) relative to the
moving point r̂(t). Since the density of ice ρi is assumed con-
stant, volume fractions and mass fractions are equivalent and

µ(r̂)=
2π
θ(t)

r̂(t)∫
0

r h(t, r)dr . (8)

The velocity of the moving point r̂(t) is defined implicitly by
keepingµ(r̂) constant in time, that is, dµ(r̂)dt = 0. By differen-
tiating Eq. (8) with respect to time using the Leibniz integral
rule, we obtain the velocity of every interior point

dr̂
dt
= U(t, r̂(t))+

1
r̂(t)h(t, r̂(t))µ(r̂) rl(t)∫

0

r m(t,r)dr −

r̂(t)∫
0

r m(t,r)dr

 . (9)

One of the points is dedicated to the static ice divide at r = 0,
while another point tracks the position of the margin rl(t),
which moves at the velocity (Bonan et al., 2016)

drl
dt
= U(t,rl(t))− m(t,rl(t))

(
∂h

∂r

)−1

. (10)

Once the velocity of each moving point has been obtained
from Eq. (9) or (10), the moving points are moved in a La-
grangian manner using the explicit Euler scheme:

r̂(t +1t)= r̂(t)+1t
dr̂
dt
. (11)

The total mass θ(t) is updated in the same way using θ̇ (t)
from Eq. (7). Finally, the ice thickness profile is updated by
differentiating Eq. (8) with respect to r̂ , giving

h(t, r̂(t))=
θ(t)

π

dµ(r̂)
d(r̂2)

. (12)

2.3 Numerical model

From the equations detailed in Sect. 2.2, a finite difference
algorithm is derived (see Bonan et al., 2016 for the full al-
gorithm). The mesh consists of nr moving nodes with the
positions

0= r̂1 < r̂2 < .. . < r̂nr−1 < r̂nr = rl(t) . (13)

No further assumption is made on the spatial distribution of
the moving nodes. At each node r̂i there is an associated ice
thickness hi and a fixed mass fraction µi . By construction,
µ1 = 0, µnr = 1 and the ice thickness at the ice sheet margin
hnr = 0 .

The user provides the initial mesh and the ice thickness at
mesh points in order to initialise the numerical model. From
these quantities, the total mass and the mass fractions at the
initial time are calculated by discretising Eqs. (6) and (8) us-
ing the following composite trapezoidal rule:

θ =
π

2

nr−1∑
i=1

(hi +hi+1)(r̂
2
i+1− r̂

2
i ) , (14)

µ1 = 0, µi+1 = µi +
π

2θ
(hi +hi+1)(r̂

2
i+1− r̂

2
i ),

i = 1, . . .,nr − 1 . (15)

The mesh points are then evolved using a discrete form of
Eq. (9) and the ice thickness is determined using a discrete
form of Eq. (12), with the mass fractions {µi} kept constant
over a time step. Full details are given in Bonan et al. (2016).

3 State estimation of a system modelled with a moving
mesh

We now recall the basics of data assimilation before explain-
ing how to adapt the 3D-Var and the ETKF methods to our
context. We then clarify the form of the observation operator
for various types of observations that we assimilate.

3.1 Data assimilation

We consider data assimilation in a discrete dynamical system
evolving in time. We denote by xk the vector of size nx de-
scribing the state of the system at time tk . For example, in our
numerical ice sheet model, ice thicknesses at mesh points are
elements of the state vector. The state xk is propagated for-
ward in time to a time tk+1 by the non-linear modelMk,k+1.
Assuming the model is perfect, we have

xk+1 =Mk,k+1 (xk) . (16)

Observations are available at times tk and are related to xk
through the equation

yk =Hk (xk)+ εk , (17)
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where yk is a vector of pk observations taken at time tk ,Hk is
the (possibly non-linear) observation operator and εk is the
observation error vector, which is assumed to be unbiased
(zero mean) with covariance matrix Rk .

The objective of DA is to provide an optimal estimate xak
of the system, called the analysis, by combining observations
with information derived from the model. We consider in this
paper two different DA schemes: a 3D-Var scheme and an
ETKF.

3.1.1 3D-Var

The 3D-Var method (see, e.g. Lorenc, 1986; Nichols, 2010)
aims to provide the optimal estimate xak by minimising the
cost function

J (x)=
1
2

(
x− xbk

)T
B−1
k

(
x− xbk

)
+

1
2

(
yk −Hk (x)

)TR−1
k

(
yk −Hk (x)

)
, (18)

where xbk is a prior, or background, estimate of the state of the
system (generally obtained by propagating forward in time
the previous analysis xak−1 with Eq. 16). The error in the prior
estimate is assumed to be unbiased with covariance matrix
Bk and to be uncorrelated to errors in the observations.

We take the observation operator Hk to be linear around
xbk , meaning that

Hk(x)≈Hk(xbk)+Hk

(
x− xbk

)
, (19)

where Hk is the linearisation of the observation operator
about the background xbk . Under this assumption, the cost
function has an explicit minimum

xak = xbk +Kk

(
yk −Hk

(
xbk

))
, (20)

where

Kk = BkHT
k

(
HkBkHT

k +Rk
)−1

. (21)

The analysis error covariance matrix can be estimated as

Pe,k = (I−KkHk)Bk . (22)

In theory, the true background error covariance matrix Bk
should be updated at each time step. However, this process
is extremely expensive for real-time applications and, in-
stead, we use a matrix with a simplified structure specified by
the user. We will see in the numerical experiments (Sects. 4
and 5) how setting Bk appropriately is essential in order to
obtain good estimates. Although the assimilation scheme we
propose here to use with the moving mesh method is a variant
of the traditional non-linear 3D-Var method, it is in essence
a variational method with a fixed form for the background
covariance matrices and we will refer to it as the 3D-Var
method in the rest of the paper.

3.1.2 Ensemble transform Kalman filter

The ensemble Kalman filter (EnKF) introduced by Evensen
(1994) approximates a fully non-linear Monte Carlo filter. At
each time step, the state of the system is represented by an
ensemble of Ne realisations

{
x
(i)
k , i = 1, . . .,Ne

}
. The state

estimate is given by the ensemble mean

xk =
1
Ne

Ne∑
i=1

x
(i)
k , (23)

and the state error covariance matrix by the ensemble covari-
ance matrix

Pe,k =
1

Ne− 1
XkXTk , (24)

where Xk is the anomalies matrix defined as

Xk =
[
x
(1)
k − xk , . . ., x

(Ne)
k − xk

]
. (25)

From the ensemble covariance matrix, we can define the ma-
trix Corr that contains an estimate of the correlation between
the state variables to be

[Corr]i,j =
[Pe,k]i,j√

[Pe,k]i,i [Pe,k]j,j
, (26)

where [Corr]i,j and [Pe,k]i,j denote the entry in the ith row
and j th column of Corr and Pe,k , respectively.

The forecast step propagates the ensemble from time tk
to tk+1 with the non-linear model Mk,k+1. For the analysis
step, we use the efficient ETKF introduced by Bishop et al.
(2001) and follow the implementation of the algorithm given
by Hunt et al. (2007).

The ETKF may generate ensembles of analyses with un-
derestimated spread, which can lead to the divergence of the
filter. We use an inflation procedure (Anderson and Ander-
son, 1999) here to avoid this potential degeneracy. In the rest
of the paper, the inflation factor is denoted by the parameter
λinfla.

In the twin experiments performed in Sects. 4 and 5, we
use a large number of ensembles to avoid producing spuri-
ous correlations in Pe,k . Therefore, no localisation has been
employed in this paper.

3.2 Form of the state vector in the moving mesh case

Traditionally, in a data assimilation scheme, the state vec-
tor includes all the physical variables of the given dynamical
system. For a fixed-grid numerical method, the model vari-
ables are defined at fixed spatial positions. For example, for
a grounded ice sheet modelled with a fixed-grid method (and
assuming every parameter is perfectly known), the unknown
variables are the ice thicknesses located at known positions
(see, e.g. Bonan et al., 2014).
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In contrast, the primary characteristic of a moving point
method is that the numerical domain evolves in time. The po-
sitions of the nodes evolve jointly with the model variables
(such as ice thickness) according to the dynamical system
equations and can be updated using the assimilation scheme.
We therefore include the positions of the nodes in the state
vector. As a consequence, we define the state vector x as fol-
lows:

x =

(
xh
xr

)
with xh =

 h1
...

hnr−1

and xr =

 r̂2
...
r̂nr

 . (27)

Estimates obtained by combining DA with this formulation
of x using a moving point numerical model provide more
information on the state of the system than if we were using
a fixed-grid method.

In particular, for an ice sheet model, this approach gives
us a direct estimation of the position of the ice sheet mar-
gin that cannot be obtained in fixed-grid methods without
interpolation. In this case, we do not include in x the ice
thickness at the margin hnr or the position of the ice divide
r̂1 as both are fixed to zero. The DA schemes must, how-
ever, provide estimates with strictly positive ice thicknesses
hi , i = 1, . . .,nr −1 and a preserved order for node positions
to respect the assumption of the moving mesh scheme.

This can be achieved with the 3D-Var method if the spec-
ified background covariance matrix Bk in Eq. (21) is pre-
scribed carefully. At time tk , we decompose the background
error covariance matrix B and the tangent linear matrix of the
observation operator H (we drop the time index k for clarity)
as

B=
(

Bh BTrh
Brh Br

)
and H=

(
Hh Hr

)
=(

∂H
∂xh

(xf )
∂H
∂xr

(xf )

)
, (28)

where Bh is the background error covariance matrix between
the model variables, Br is the error covariance between mesh
point locations and Brh includes the cross-covariances be-
tween errors in point locations and errors in model variables.
The different components of the state vector are then updated
by the following analysis step:

xah = xbh+
(

BhHT
h +BTrhHT

r

)(
HBHT

+R
)−1

(
y−H

(
xb
))

(29)

xar = xbr +
(

BrhHT
h +BrHT

r

)(
HBHT

+R
)−1

(
y−H

(
xb
))
. (30)

The most difficult step with this form of analysis is, in gen-
eral, to set appropriately the cross-covariances in Brh that
are needed for the update stage. For example, if either Hh

or Hr is zero, a non-zero Brh matrix is the only way to cor-
rect estimates of both xh and xr . However, we will see in the
next section that in our assimilation systems for the ice sheet
model, the observation operator depends explicitly on both
ice thickness variables and mesh node locations, and there-
fore by setting Brh to zero we can still obtain good estimates.

For the moving point ice sheet model, the DA analysis step
updates both ice thickness variables and node positions, but
the total mass and mass fractions have to be updated as well,
since they are not preserved by the analysis (and there is no
reason to preserve them). Therefore, these quantities need to
be “reset” from the analysed state vector. This is easily done
by using Eqs. (14) and (15). The adapted 3D-Var scheme is
performed according to the following steps:

1. calculate a forecast of the state vector xb by using the
previous analysis solution to initialise the numerical
moving point model,

2. use the analysis scheme (Eqs. 29 and 30) to produce the
analysis xa ,

3. from xa , calculate the analysed total mass θa and update
the mass fractions µa using Eqs. (14) and (15),

4. evolve the analysis solution using the numerical mov-
ing point model to the next time where observations are
available and

5. repeat steps 2–5.

The adapted ETKF roughly follows the same path as 3D-
Var except that, at step 1, we calculate the forecast for each
member of the ensemble and, at step 3, the total mass and
mass fractions have to be updated for each member of the en-
semble (they are different for each ensemble member). The
background error covariance is also updated using the en-
semble statistics. The strict positivity of ice thickness vari-
ables and the order required in Eq. (13) for node positions
are ensured by appropriately setting the initial ensemble in
the ETKF.

We remark that observations outside the domain of the
background state at the time of the update cannot be assim-
ilated. This is a limitation on both methods, but the ETKF
has the advantage that it can take into account such observa-
tions if the domain of the background of any member of the
ensemble is large enough to include the reference domain.

3.3 Type of observations assimilated

In the twin experiments performed in Sects. 4 and 5, we use
three different conventional types of observations of an ice
sheet system that are available in reality (see, e.g. Vaughan
et al., 2013). The first is direct observations of the ice thick-
ness. Assuming that we have an observation of the ice thick-
ness located at position ro, we define the associated observa-
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tion operator as

H(x)=
{
hi +

ro−r̂i
r̂i+1−r̂i

(hi+1−hi) if r̂i ≤ ro ≤ r̂i+1

0 elsewhere ,
(31)

which is merely a piecewise linear interpolation operator.
Note that H depends on both ice thickness variables hi and
node locations r̂i . We also assimilate observations of surface
elevation and surface ice velocity. We again use a piecewise
linear interpolation operator as in Eq. (31). For observations
of surface elevation, we have

H(x)=
{
si +

ro−r̂i
r̂i+1−r̂i

(si+1− si) if r̂i ≤ ro ≤ r̂i+1

b(ri) elsewhere,
(32)

with

si = hi + b(ri) . (33)

For observations of surface ice velocity, from a discretisation
of Eq. (4) (see Appendix B2 in Bonan et al., 2016), we have

H(x)=
{
us,i +

ro−r̂i
r̂i+1−r̂i

(
us,i+1− us,i

)
if r̂i ≤ ro ≤ r̂i+1

0 elsewhere,

(34)

with

us,i =
1
2
A (ρig)

3 sgn
(
snr − snr−1

)
∣∣∣∣∣h4
i

(
∂b

∂r
(ri)

)3

+
3
5

h5
i −h

5
i−1

r̂i − r̂i−1

(
∂b

∂r
(ri)

)2

+
1
3

(
h3
i
−h3

i−1
r̂i − r̂i−1

)2
∂b

∂r
(ri)+

27
343

h7/3
i
−h

7/3
i−1

r̂i − r̂i−1

3
∣∣∣∣∣∣∣ , (35)

except for us,1 = 0.
We may also assimilate observations of the position of the

ice sheet margin. Using a moving point method allows the
movement of boundaries to be tracked explicitly. In our con-
text, the position of the ice sheet margin is represented by
r̂nr . As a consequence, the observation operator for such an
observation is defined by

H(x)= r̂nr . (36)

The operator is continuous and linear. This makes the assim-
ilation of the position of the margin straightforward in com-
parison with the same assimilation with a fixed-grid model
(see, e.g. Lecavalier et al., 2014).

4 Numerical experiments with an idealised model

To demonstrate the efficiency of our DA approach, we per-
form twin experiments with two different configurations. In
this section, we consider experiments using an idealised sys-
tem with a flat bedrock and the EISMINT surface mass bal-
ance detailed in Eq. (A1).

Radius (in km)
0 100 200 300 400 500

A
lti

tu
de

 (
in

 m
)

0

500

1000

1500

2000

2500

3000
Reference run

t = 0 yr
t = 500 yr
t = 1000 yr
t = 1500 yr
t = 2000 yr

Figure 2. Ice thickness profile from the reference run in a simple
case (flat bedrock, EISMINT surface mass balance from Eq. A1).
The initial state follows the profile of Eq. (37) with h0 = 2000 m
and rmax = 450 km. The reference run is obtained with an initial
mesh of nr = 28 points evenly spaced between r̂1 = 0 and r̂nr =
450 km.

4.1 Experimental design

We first generate a model run with the moving point numer-
ical model from known initial conditions. From this simula-
tion, observations are created with added error sampled from
a Gaussian distribution. This run is used as a reference to
measure the quality of the DA estimates.

We define the reference initial ice thickness profile by the
function

h(0, r)= h0

(
1−

(
r

rmax

)2
)3/7

0≤ r ≤ rmax (37)

where h0 = 2000 m and rmax = 450 km. This function gives
a smooth interior profile with a steep snout at the ice sheet
margin rmax. This is in compliance with the physics involved
in the ice sheet model and provides an initial state with a mar-
gin that is immediately in motion. The reference run is ob-
tained with an initial mesh of nr = 28 points evenly spaced
between r̂1 = 0 and r̂nr = 450 km. The model time step is
1t = 0.02 years, the bed elevation b is fixed to zero and the
surface mass balance used is from the EISMINT benchmark
(Eq. A1). The experiment starts at time t = 0 years and ends
at t = 2000 years. The evolution of the reference ice thick-
ness profile can be seen in Fig. 2.

From the reference run, we generate observations of ice
thickness and the position of the ice sheet margin at times
t1 = 500 and t2 = 1500 years. Observations of thickness are
taken at each point except at the margin (a total of 27 ob-
servations) with added random noise from the Gaussian dis-
tribution N (0,σ oh

2), σ oh = 100 m. For the position of the
margin, the observational noise is sampled from N (0,σ or

2),
σ or = 10 km.
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To evaluate the performance of our DA approaches, we
compare the estimated ice thickness profiles with their refer-
ence counterparts. This is mostly done graphically. We also
study the quality of the estimates of two variables: the ice
thickness at the ice divide at r = 0 and the position of the ice
sheet margin.

4.2 Updating the ice thickness only

We begin by studying the performance of the DA schemes in
the idealised configuration where we assimilate observations
of ice thickness only. We start with an experiment using the
3D-Var algorithm in which only the ice thickness is updated
at the assimilation times and the mesh point positions are not
updated.

The background state is defined as follows:

– At initial time, the background ice thickness profile is
set using the same profile as the reference (Eq. 37) but
with h0 = 2100 m (+5 % error from the reference) and
rmax = 472.5 km (also +5 % error).

– The background mesh consists of nr = 28 points,
evenly spaced between r̂1 = 0 and r̂nr = 472.5 km at
initial time.

– The model time step is 1t = 0.02 years.

As we are using a 3D-Var scheme in this experiment, the
background error covariance matrix B needs to be prescribed
at both times of assimilation (t1 = 500 and t2 = 1500 years).
In this first experiment, we only update ice thickness vari-
ables, so we set the background error covariance matrix for
point positions Br and the cross-covariance matrix Brh to
zero. We define Bh the covariance matrix for ice thickness
variables as

Bh = D1/2
h ChD1/2

h , (38)

with Dh the diagonal variance matrix and Ch the correla-
tion matrix. Dh is simply set to σ bh

2Inr−1 with σ bh = 100 m.
The background error correlation structure follows a second-
order autoregressive (SOAR) distribution with

[Ch]i,j =

(
1+
|r̂bi − r̂

b
j |

Lh

)
exp

(
−
|r̂bi − r̂

b
j |

Lh

)
i,j = 1, . . .,nr − 1 , (39)

where [Ch]i,j denotes the entry in the ith row and j th column
of Ch, r̂bi the location of the ith mesh point of the background
state at the time of assimilation and Lh is some correlation
length scale to be fixed. The SOAR function is preferred to
a Gaussian structure as the matrix Ch is better conditioned
for inversion in that case (Haben et al., 2011). We set Lh to
100 km.

This definition of B takes into account the flow depen-
dency of the moving point locations, making our approach

adaptive. Figure 3 displays Bh at assimilation times t1 = 500
and t2 = 1500 years. As the distance between grid points
increases in time in the experiment, the covariances tend
to reduce between the two assimilation times. For exam-
ple, the covariance between the location of points r̂b1 and
r̂bnr−1 is reduced from [Bh]1,nr−1 = 530.7 at t1 = 500 years
to [Bh]1,nr−1 = 446.6 at t2 = 1500 years. In addition, we
note decreased correlations for points around the centre of
the mesh due to a greater distance between adjacent nodes in
the centre of the grid than at the boundaries.

The formulation of B forces the recomputation of the ma-
trix at every assimilation time. This is a limiting factor of our
3D-Var approach, especially for high-dimensional systems,
making it cost more than traditional 3D-Var for fixed-grid
models in which B is only computed once. Nevertheless, our
experiments demonstrate that this formulation of the back-
ground error covariance matrix ensures that the moving point
framework produces positive estimates of ice thickness vari-
ables and a smooth interior profile in accordance with the
physics of the system.

We now evaluate the quality of the estimates. Figure 4
(left) displays the analysed ice thickness profile compared
to its background and reference counterparts at the first time
of assimilation t1 = 500 years. The picture shows that the ice
thickness profile in the interior of the ice sheet is substan-
tially improved by DA. For example, the absolute error in
ice thickness at the ice divide (r = 0) is reduced from 100
to 58.3 m by the 3D-Var analysis. Results are even better be-
tween r = 100 and 400 km. Since we only update xh in this
experiment, the position of the margin is not modified by
our update. Nevertheless, by correcting the interior of the ice
sheet, the forecast of the migration of the margin is improved
(see the central and right pictures after t = 500 years; Fig. 4),
and at the second assimilation time, t = 1500 years, the ab-
solute difference between the position of the margin before
analysis and its reference position is only 5.6 km (instead of
15.9 km without DA).

4.3 Updating ice thickness variables and node positions

We now use 3D-Var to update both ice thickness variables
and node locations. The definitions of Bh and Brh remain the
same as in the previous experiment, but we set the covariance
matrix for node positions Br to be Br = D1/2

r CrD
1/2
r with

Dr the diagonal variance matrix and Cr a correlation matrix.
The matrix Dr is set to σ br

2Inr−1 with σ br = 22.5 km and Cr
follows a SOAR distribution with

[Cr ]i,j =

(
1+
|r̂bi+1− r̂

b
j+1|

Lr

)
exp

(
−
|r̂bi+1− r̂

b
j+1|

Lr

)
,

i,j = 1, . . .,nr − 1 , (40)

where Lr is a correlation length scale fixed to 100 km. The
correlation matrix Br constrains the movement of the assim-
ilated mesh points and the correlation function used in the
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Figure 3. Covariance matrices for ice thickness variables Bh used by the 3D-Var at assimilation times t1 = 500 and t2 = 1500 years. Co-
variances between variables at distant locations tend to reduce between the two assimilation times. The distance between adjacent nodes also
tends to be greater in the centre of the mesh than at the boundaries, leading to a decreasing covariance at t2 = 1500 years in this area.
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Figure 4. (a) 3D-Var analysis at time t = 500 years compared with the forecast and the reference when we update only ice thickness variables.
The ice thickness profile is improved, especially between r = 100 and r = 400 km. (b) Evolution of the position of the margin with time.
Even if the position of the margin is not directly updated, the trajectory of the margin is corrected as a result of the ice thickness update.
(c) Evolution of the position of grid points with time. The trajectory of each grid node is corrected after each analysis, as is the margin.

formulation of Br is selected to ensure that the order of the
points defined by Eq. (13) is preserved by the 3D-Var algo-
rithm. Since the distance between nodes evolves in time, it is
even more important than in the previous case to use a flow-
dependent background error covariance matrix B.

Results for the ice thickness profile are shown in Fig. 5.
Overall estimates obtained with updating both ice thickness
variables and node positions are better than when we update
only ice thickness variables. The absolute error in ice thick-
ness at the ice divide (r = 0) is reduced from 100 to 60.2 m
by the 3D-Var analysis at time t1 = 500 years, which is sim-
ilar to the previous experiment. However, we now obtain at
t1 = 500 years a very accurate ice thickness profile close to
the margin and its estimated position has an absolute error
of only 0.2 km. This shows that the estimated position of the
ice sheet margin can be accurately corrected by only using
standard observations (no observation of the position of the
margin is involved in this experiment). At the second time
of assimilation at t2 = 1500 years, the estimate is degraded,
however, as a result of using fixed variances in the matrix B.
This behaviour is discussed further in Sect. 4.5.

The 3D-Var method provides information on the analysis
covariance structures for ice thickness variables and mesh
point positions. In Fig. 6, we display the estimated standard
deviations and the error correlation matrix Corr (see Eq. 26)
obtained at time t = 500 years using the estimated analysis
error covariance matrix Pe,k given by Eq. (22). We see that
the 3D-Var method produces decreased standard deviations
and correlation length scales for ice thickness variables close
to the ice divide and decreased standard deviations and cor-
relation length scales for node locations close to the margin.
The 3D-Var method also produces strong anti-correlations
between ice thickness variables and node positions, meaning
that in order to fit the observations where the ice thickness
variables become larger, the associated nodes need to retreat.

In these experiments, we have specified a fixed form for
the background error covariance matrices, which are defined
in terms of the positions of the nodes. We next show, using
an ETKF, how the covariances are expected to evolve in time
with the model dynamics and the effects of this on the assim-
ilation.
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Figure 5. (a) 3D-Var analysis at time t = 500 years compared with the forecast and the reference when we update ice thickness variables and
node locations. In contrast to the results shown in Fig. 4, the ice thickness profile is substantially improved close to the margin. (b) Evolution
of the position of the margin with time. The estimates are of very good quality even if the margin is not observed directly. (c) Evolution of
the position of mesh points with time. The trajectory of each node is corrected by each analysis, as is the margin.

Figure 6. Standard deviations and correlation matrix Corr estimated from the 3D-Var analysis at time t = 500 years when we use only
observations of ice thickness. Auto-correlations between ice thicknesses are located in the top left corner of Corr; auto-correlations between
node positions are in the bottom right corner. The rest of the matrix depicts the cross-correlations.

4.4 Using an ETKF

We now perform the same experiment as before except that
we now use an ETKF. The key question is how to generate
the initial ensemble composed of Ne members. The easiest
way is to add noise to a background state sampled from a
Gaussian lawN (0,B) with B as the background error covari-
ance matrix defined in Eq. (28).

In this experiment, we generate an initial ensemble of
Ne = 200 members using:

– the same background state used in the experiments de-
tailed in Sect. 4.2 and 4.3,

– Bh defined by Eq. (38) with the diagonal matrix Dh =
σ 2
h Inr−1, σ bh = 100 m, Ch defined by Eq. (39), Lh =

100 km,

– Br taken as D1/2
r CrD

1/2
r with Cr defined by Eq. (40)

with Lh = 100 km and the diagonal matrix Dr defined
as

[Dr ]ii =min
(
σ br ,α r̂i

)
i = 1, . . .,nr − 1 (41)

with σ br = 22.5 km and α = 0.2, and

– Brh set to zero.

Note that the definition of B is slightly different from the
previous experiment as we choose different diagonal vari-
ances. The change is because of the high probability of
generating useless initial meshes with negative radii using
Dr = σ br

2 Inr−1, as the background standard deviation σ br is
larger than the background position of the first points (for
example, r̂b2 = 17.5 km). To avoid this problem, we have de-
cided just to reduce the variance for the position of points
near the ice divide using Eq. (41). The new ensemble mean
has, at the initial time, an estimated position of the margin
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Figure 7. (a) ETKF analysis at time t = 500 years compared with the forecast and the reference. The ice thickness profile is improved over
the whole domain and the reference profile is within the ensemble spread. (b) Evolution of the ice thickness at r = 0 with time. The estimates
are of very good quality and the estimates seem to converge towards the reference value at the end of the study. (c) Evolution of the position
of the margin with time. The ETKF provides consistent estimates and the reference value is always within the ensemble spread.
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Figure 8. Standard deviations and correlation matrix Corr estimated from the ETKF analysis ensemble at time t = 500 years when we use
only observations of ice thickness. Auto-correlations between ice thicknesses are located in the top left corner of Corr; auto-correlations
between node positions are in the bottom right corner. The rest of the matrix depicts the cross-correlations.

of 472.9 km with an estimated standard deviation of 22.8 km
(where the true value at t = 0 is 450 km).

We do not use any inflation in this experiment (λinfla = 1).
Results are summarised in Fig. 7. At the first time of as-

similation t1 = 500 years, the analysis step corrects the ice
thickness profile well. The estimate of the ice thickness at
r = 0 is of the same quality as in the previous experiments
(absolute error of 46.9 m) and the estimate of the position
of the margin is reduced from 483.1 km (forecast mean with
estimated standard deviation 18.9 km) to 468.8 km (analysis
mean with estimated standard deviation 7.1 km). The esti-
mate obtained by the ETKF is in accordance with the true
value (which is within the ensemble spread) and the absolute
error of 7.5 km is of the same order as the estimated stan-
dard deviation. The rest of the experiment exhibits the same
quality in terms of recovering the ice thickness profile.

The ETKF provides information on the covariance struc-
tures for ice thickness variables and mesh point positions. We
display estimated standard deviations and an estimate of the
correlation matrix Corr (see Eq. 26) in Fig. 8 for the analy-
sis ensemble at time t = 500 years. The ETKF produces de-

creased standard deviations and correlation length scales for
ice thickness variables close to the ice divide. For example,
the standard deviation of the ice thickness at the ice divide is
more than halved by the analysis, from 97.4 m before analy-
sis to 41.6 m. Decreased standard deviations and correlation
length scales are also obtained for node locations but close to
the margin in this case. The standard deviation for the posi-
tion of the margin is reduced from 18.9 km to 7.1 km by the
analysis. The ETKF also produces strong anti-correlations
between ice thickness variables and node positions, meaning
that where ice thickness variables become larger associated
nodes need to retreat to fit the observations of ice thickness.

4.5 Comparing 3D-Var and the ETKF

We now compare the results from applying the 3D-Var and
ETKF assimilation schemes in the case where we observe
only the ice thickness. We focus on the accuracy of the esti-
mated ice thickness at r = 0 and the position of the margin.

Figure 9 shows the evolution of the absolute errors in the
estimates of the ice thickness at r = 0 and in the position of
the margin for the ETKF and for 3D-Var, with and without
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Figure 9. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin when we observe
only the ice thickness. We compare the absolute errors obtained when we use 3D-Var without and with correction of the position of grid
nodes and when we use an ETKF.

Figure 10. The background error covariance matrices used by the 3D-Var and ETKF methods to produce the analysis at time t = 1500 years.

node updates. All three methods provide improved estimates
at the first analysis time (t1 = 500 years), leading to good
forecasts up to the next assimilation time. We find that the
ETKF tends to perform better than the variational approach
and that for 3D-Var the estimates obtained by updating both
ice thickness variables and node positions are generally bet-
ter than those where only ice thickness variables are updated.

For 3D-Var without node updates, the analysis at the sec-
ond time of assimilation (t2 = 1500 years) of the ice thick-
ness at r = 0 is unfortunately degraded relative to the fore-
cast, but the estimated position of the margin is still im-
proved by the second analysis. In the case where ice thick-
ness and nodes are updated, the estimates of both ice thick-
ness at r = 0 and the position of the margin are degraded at
the second time of assimilation. This weakens the confidence
in the forecast and we partially lose what we had gained from
the previous analysis. The experiment shows the sensitivity
of 3D-Var to current observations resulting from the depen-
dence of the prescribed covariance matrix B on the positions
of the mesh nodes.

Using the ETKF assimilation scheme, where the covari-
ance matrix fully evolves in time, is seen to improve the
overall estimates. At each assimilation time, the errors in the
estimated ice thickness and the position of the margin are de-
creased. Notably, we do not observe any degrading of the es-
timates at the second time of assimilation. This improvement
can be attributed to the better background forecast produced
by the ETKF at each assimilation time.

In Fig. 10, we display the background error covariance
matrices used by the 3D-Var and ETKF methods to produce
the analysis at time t = 1500 years. At the previous assimi-
lation time t = 500 years, the analysis covariances produced
by both methods are very similar, as seen in Figs. 6 and 8.
However, because the 3D-Var error covariance matrix has a
fixed form, the background covariance matrix used by 3D-
Var at the assimilation time t = 1500 years has not changed
significantly. In contrast, it can be seen that the ETKF back-
ground error covariance has fully evolved and contains much
more information than the 3D-Var error covariance matrix.
This explains the better ability of the ETKF to provide ac-
curate estimates in the context of the moving point model.
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Figure 11. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin when we observe
the ice thickness and the position of the margin. We compare the absolute errors obtained when we use 3D-Var with correction of the position
of grid nodes and when we use an ETKF. In both experiments, the results are improved with respect to the position of the margin (compared
to results detailed in Fig. 9). No improvement (nor degradation) is observed for the ice thickness at r = 0.

Propagating the background error covariances using the en-
semble statistics ensures that the ETKF is a more reliable
scheme than 3D-Var. This improvement has a computational
cost, however, as we now need to run the model Ne times
instead of once for 3D-Var.

4.6 Assimilating observations of the position of the
margin

In this section, we perform the same experiments as previ-
ously, but we now assimilate not only the same observations
of ice thickness as before but also observations of the posi-
tion of the margin. We consider only the case of 3D-Var with
grid update and the ETKF.

Absolute errors for the estimates of the ice thickness at
r = 0 and the position of the margin are shown in Fig. 11.
In both cases, assimilating observations of the position of the
margin is beneficial to our estimates of the margin and of the
ice thickness profile close to the margin. For example, the
estimated position of the margin at time t = 500 years has an
absolute error of 4.2 km for the ETKF (compared to 7.5 km
previously). Not surprisingly, it does not change the results
for the ice thickness at r = 0.

Adding observations of the position of the margin in the
data assimilation system reduces the estimated standard de-
viations obtained with the ETKF for variables close to the
margin. For example, the estimated standard deviation for the
position of the margin is now 5.8 km instead of 7.1 km. Not
surprisingly it has no influence on the standard deviation for
variables close to the ice divide. The estimated correlation
structure (not shown) is also not modified by adding obser-
vations of the position of the margin in the DA system.

5 Numerical experiments with an advanced
configuration

In this section, we consider experiments using a more real-
istic configuration with a non-flat bedrock and an advanced
surface mass balance, detailed in Appendix A2. We inves-
tigate the case of a rapidly warming climate over a short
timescale.

5.1 Experimental Design

We generate observations from a new reference run. We use
a non-flat fixed bedrock whose elevation is defined by the
equation

b(r)= 1000m− 1400m ·
( r

1000km

)2

+ 700m ·
( r

1000km

)4
− 120m ·

( r

1000km

)6
. (42)

The reference run is generated from a realistic initial state
obtained with the following steps:

– Start with an ice sheet profile following Eq. (37)
with h0 = 2000 m, rmax = 300 km and nr = 21 compu-
tational mesh points evenly spaced between r̂1 = 0 and
r̂nr = 300 km.

– Run the numerical model with a fixed climate forc-
ing, as defined in Eq. (A4), where Tclim = 4 ◦C until
it reaches the steady state (a 30000-year run with a
1t = 0.01-year time step).

– From this steady state, run the numerical model with a
linearly warming climate forcing from Tclim = 4 ◦C with
dTclim/dt = 0.02 ◦C yr−1 for an extra 100 years (1t =

Nonlin. Processes Geophys., 24, 515–534, 2017 www.nonlin-processes-geophys.net/24/515/2017/



B. Bonan et al.: Data assimilation for moving mesh methods applied to ice sheet modelling 527

Radius (in km)
0 200 400 600 800 1000 1200

A
lti

tu
de

 (
in

 m
)

0

1000

2000

3000

4000

5000
Reference initial state

Bed elevation
Surface elevation

Figure 12. Initial state used to obtain a 20-year reference run under
a warming climate as detailed in Sect. 5.1 with nr = 21 grid points
and a non-flat bed.

0.01 years). The state obtained at the end of the run is
the initial state (see Fig. 12).

The reference is obtained by running the model over
20 years from the initial state with a time step 1t =

0.01 years and the same linearly warming climate forc-
ing as defined in Appendix A.2, with Tclim = 6 ◦C at initial
time t = 0 years, and Tclim = 6.4 ◦C at t = 20 years (that is,
Tclim = 6+ 0.2t). Over the 20-year run, the geometry of the
ice sheet stays relatively similar to the geometry of the initial
state due to the slow dynamics of the model. The ice sheet
margin retreats from 1160.9 to 1158.6 km and the ice thick-
ness at the ice divide increases by 1.5 m.

We generate observations of surface elevation, surface ice
velocity and the position of the ice sheet margin at times t =
1,2, . . .,10 years from the reference run. The observations
of the surface are taken at each point including the margin
with an added Gaussian noise (uncorrelated with standard
deviation σ os = 200 m). The observations of the surface ice
velocity are located at the midpoints between mesh points (so
we have 20 observations of surface velocity). Observations
are noised using a Gaussian law (standard deviation σ ous =
30myr−1, uncorrelated). For the position of the margin, the
observational noise is sampled from N (0,σ or

2) with σ or =
50 km.

We compare the influence of the observations on the qual-
ity of the DA estimates and the subsequent forecasts for the
3D-Var and ETKF methods. Again, we focus on the two vari-
ables: the ice thickness at the ice divide at r = 0 and the po-
sition of the ice sheet margin.

5.2 Assimilating observations of surface elevation

We begin by studying the performance of the DA schemes
where we assimilate only observations of surface elevations.

For 3D-Var, the estimates are obtained using an initial
background state defined as xb = 0.95xref(0) with a 5 %
smaller extent than the reference state. The flow-dependent

background error covariance matrix B is defined as in
Eq. (28). The matrix Bh is defined as in Eq. (38) with a SOAR
matrix for Ch (σ bh = 200 m, Lh = 240 km) and Br is defined
with a SOAR matrix for Cr (σ br = 60 km, Lr = 240 km). The
matrix Brh is set to 0.

The ETKF uses an ensemble with 200 members. The ini-
tial ensemble is generated by adding to xb a random noise
drawn from the Gaussian law N (0,B). The background co-
variance matrix B is defined as previously, except for Br for
which we still use a SOAR matrix for Cr (Lr = 240 km)
but with variances decreased near the ice divide following
Eq. (41) (σ br = 60 km and α = 0.2). We tested different val-
ues for the inflation parameter λinfla; the best results were
obtained with λinfla = 1.01.

We first study the results obtained with the ETKF. At the
end of the data assimilation window, t = 10 years, the ice
thickness profile is retrieved well everywhere by the mean of
the ensemble and the reference profile is within the ensem-
ble spread (see Fig. 13). We note that the estimate of the ice
thickness at the ice divide is improved by the first analysis.
After time t = 7 years, however, the estimate is worsened by
the analysis. This is because the ensemble spread is too small
from that time onwards. This can be fixed by taking a larger
inflation parameter λinfla, but the estimates of other variables
are then degraded. The estimated position (mean) of the mar-
gin at t = 10 years is 1158.0 km with an ensemble standard
deviation of 3.1 km. In comparison to the reference value at
that time, r = 1159.9 km, we see that the ETKF with a large
ensemble performs well. The quality of the estimates is also
kept high during the forecast (from t = 10 to t = 20 years).
For example, the absolute error on the position of the margin
is kept below 2.5 km over this time window.

With respect to the covariance matrix, the estimates seem
to show a similar behaviour to those of the experiment de-
tailed in Sect. 4.4 using the ETKF where observations of
ice thickness are assimilated (see Fig. 14), but with a larger
correlation length scale. The similarity can be explained by
the similarity of the construction of the initial ensemble (the
same structure for the background covariance matrix B used
to sample the Gaussian noise added to the background state)
and by the similarity of the observation operators for ice
thickness and surface elevation.

We now compare the ETKF with results obtained with
3D-Var. Absolute errors in the ice thickness at r = 0 and in
the position of the margins are displayed for both cases in
Fig. 15. As in previous experiments, the ETKF performs bet-
ter than 3D-Var. For example, the absolute error for the ice
thickness at the ice divide stays below 60 m after t = 1 year
for the ETKF. By contrast, the absolute error for 3D-Var can
be up to 125 m. The same statement remains valid for the
absolute error in the position of the margin, which stays be-
low 8 km for the ETKF after t = 2 years, yet can be up to
20 km for 3D-Var. We remark that, since the domain of the
background state is smaller than that of the reference state,
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Figure 13. ETKF results for the advanced configuration where observations of surface elevation are assimilated over the first 10 years and a
forecast is made for 10 further years. (a) ETKF analysis at time t = 10 years compared with the reference. (b) Evolution of the ice thickness
at r = 0 with time. (c) Evolution of the position of the margin with time.

Est. [corr]  at t = 10 yr
i,j

Index j
10 20 30 40

In
de

x 
i

10

20

30

40 -1

-0.5

0

0.5

1

Radius (in km)
0 500 1000

S
D

 h
 (

bl
ue

 x
, i

n 
m

)

0

50

100
Est. standard deviations at 10 yr

S
D

 r
 (

or
an

ge
 +

, i
n 

km
)

0

50

Figure 14. Standard deviations and correlation matrix Corr estimated from the analysis ensemble at time t = 10 years in the advanced
configuration where we observe surface elevation. The matrix Corr has the same structure as B defined by Eq. (28). Both standard deviations
and correlation structures are similar to Fig. 8.

3D-Var does not assimilate all available data. Indeed, the
algorithm cannot incorporate observations outside the back-
ground domain because of the form of the observation opera-
tor (see Eq. 32). This is not, however, the case for the ETKF,
even if the ensemble mean has a smaller domain than the ref-
erence domain, since in this case there is at least one member
of the ensemble with a bigger domain than that of the refer-
ence. At the end, both approaches show a similar accuracy in
the forecast state after time t = 10 years, showing again the
efficiency of both DA schemes.

5.3 Assimilating observations of surface velocity and
position of the margin

We now consider assimilating observations of surface ice ve-
locity and the position of the margin (if we only assimilate
observations of surface ice velocity, the problem is undeter-
mined).

Again, we want to compare the accuracy of 3D-Var and the
ETKF using this new set of observations. We use the same
background state, the same structure for B and the same ini-

tial ensemble as before. The observation operator for surface
velocities is non-linear (see Eq. 35) and, even though the en-
semble is large, inflation is necessary in this case. We take an
inflation of λinfla = 1.10. If the inflation is taken any larger in
this example, the ETKF analysis produces ensemble mem-
bers with a non-ordered grid and the experiment cannot be
pursued.

We first study the results obtained with the ETKF. At the
end of the DA window, t = 10 years, the ice thickness profile
is retrieved well everywhere by the mean of the ensemble,
except near the ice divide at r = 0 (see Fig. 16). This is due
to the relatively large uncertainty of surface velocity obser-
vations near the ice divide compared to the reference value at
the same point (here σ ous = 30myr−1 and the reference sur-
face velocity near the ice divide is below 0.1myr−1). The
estimated (mean) position of the margin at t = 10 years is
1144.7 km with an ensemble standard deviation of 12.1 km.
This is an absolute error of 15 km, so it is worse than in the
case where we observed the surface elevation, but assimilat-
ing these data still provides better estimates than those ob-
tained with no assimilation. This comment remains valid for
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Figure 15. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin in the advanced
configuration where we assimilate surface elevations over the first 10 years. We compare the absolute errors obtained when we use 3D-Var
with the correction of the position of grid nodes and when we use an ETKF. The ETKF performs better than the 3D-Var for both variables.
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Figure 16. ETKF results for the advanced configuration where observations of surface ice velocity and the position of the margin are
assimilated over the first 10 years and a forecast is made for the following 10 years. (a) ETKF analysis at time t = 10 years compared with
the reference. (b) Evolution of the ice thickness at r = 0 with time. (c) Evolution of the position of the margin with time.

the forecasts obtained after t = 10 years since estimates of
the position of the margin are not degraded over the time
window [10, 20 years].

Estimates of the standard deviations and covariances, as
shown in Fig. 17, differ from those of the previous experi-
ment (see Fig. 14 for comparison). The reduction in the stan-
dard deviation for ice thickness variables close to the ice di-
vide is less significant than in the previous experiment. This
is due to the relatively large uncertainty of surface veloc-
ity observations near the ice divide compared to the refer-
ence value at the same point. We remark that assimilating
observations of surface ice velocity together with the posi-
tion of the margin leads to an increased correlation length
scale for ice thickness variables and to a smaller correla-
tion length scale for node positions compared to the previ-
ous experiment. Finally, the cross-covariances have smaller
anti-correlations and positive correlations appear between ice
thickness variables in the interior of the ice sheet and be-
tween node positions close to the margin. These differ sig-
nificantly from the case where we assimilate observations of

surface elevation as a result of the difference in observation
operators.

We finally compare the ETKF with results obtained with
3D-Var. Absolute errors in the ice thickness at r = 0 and in
the position of the margins are displayed for both cases in
Fig. 18. As in previous experiments, the ETKF performs bet-
ter than 3D-Var for the position of the margin, but 3D-Var
gives better results for the ice thickness at r = 0 and performs
reasonably well overall in this non-linear context. The fore-
cast trajectory of the margin after t = 10 is improved by DA
in both cases. This demonstrates again the robustness of our
DA approach in the context of an ice sheet modelled with a
moving point numerical model.

6 Conclusion and prospects

In this paper, we have adapted standard data assimilation
techniques (a 3D-Var scheme and an ETKF) to estimate the
state of a 1-D ice sheet model using a moving point method.
This is done by including both ice thickness variables and
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Figure 17. Standard deviations and correlation matrix Corr estimated from the analysis ensemble at time t = 10 years in the advanced
configuration where we observe surface ice velocity and the position of the margin. The matrix Corr has the same structure as B defined by
Eq. (28). Both standard deviations and cross-correlation structures are different from those shown in Fig. 14.
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Figure 18. Evolution of the absolute error of the estimated ice thickness at r = 0 and the estimated position of the margin when we observe
surface ice velocities and the position of the margin in the advanced configuration. We compare the absolute errors obtained when we use
3D-Var with the correction of the grid-node positions and when we use an ETKF. The ETKF performs better than the 3D-Var with respect to
the position of the margin, but 3D-Var gives better results for the ice thickness at r = 0 in this case.

the location of mesh nodes in the state vector. The only re-
quirement is to ensure that the update does not produce a
non-ordered moving mesh. This can be achieved empirically
either by using an appropriate flow-dependent background
covariance matrix with large correlations between adjacent
mesh points or by using an ensemble with the same proper-
ties. This combination has been validated with various twin
experiments assimilating classical available observations for
an ice sheet (ice thickness, surface elevation and surface ice
velocity) and also observations of the position of the bound-
ary. These twin experiments show the following:

– The form of the state vector allows the explicit tracking
of boundary positions for moving boundary problems.

– This form also allows a straightforward and efficient as-
similation of boundary positions (in this paper, the po-
sition of the margin).

– Assimilating spatially distributed observations gives
better estimates if node locations are updated in the
analysis step.

– 3D-Var can have issues with assimilating observations if
they are located outside the forecast domain; the ETKF
can overcome these issues if at least one member of the
ensemble has its numerical domain large enough to in-
clude the location of these observations.

– ETKF tends to provide better estimates than 3D-
Var, mainly because of its capacity to provide flow-
dependent statistical estimates of the background error
covariances, but 3D-Var still provides satisfactory esti-
mates.

– ETKF provides not only good state estimates but also
interesting information on the structure of the covari-
ances; these are expected to be dominated by the statis-
tics of the initial ensemble and the type of observations
that are assimilated.

Nonlin. Processes Geophys., 24, 515–534, 2017 www.nonlin-processes-geophys.net/24/515/2017/



B. Bonan et al.: Data assimilation for moving mesh methods applied to ice sheet modelling 531

Whilst this paper uses a particular moving mesh method for
the 1-D numerical model, our approach can be extended to
any 1-D moving boundary problem modelled with a moving
mesh, assuming only that the ordering of the points must be
maintained.

Moving mesh approaches are also suitable for modelling
the evolution of 2-D moving boundary phenomena (Baines
et al., 2009). The successful application of the moving mesh
method to a 2-D model of an ice cap is presented in Partridge
(2013). Initial results on the assimilation of observations of
ice thickness into the 2-D ice cap model are also given in Par-
tridge (2013). These results raise a number of issues concern-
ing the approach needed for updating the nodal positions of
the 2-D grid during the assimilation step. Research on these
issues is ongoing.

Data availability. Data have been generated using the ice sheet
model as described in the text and can be reproduced by the reader
using the algorithm given in Bonan et al. (2016). The ETKF used
in this paper follows the implementation of Hunt et al. (2007). The
3D-Var method and the design of each experiment are fully detailed
in the paper.
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Appendix A: Surface mass balances

A1 EISMINT surface mass balance

For the twin experiments performed in Sect. 4, we use the
simple constant-in-time surface mass balance employed in
the moving margin experiments of the EISMINT intercom-
parison project (Huybrechts et al., 1996):

m(r)=min
(

0.5myr−1,10−2 myr−1 km−1
· (450km− r)

)
. (A1)

A2 Parameterised surface mass balance with feedback
loop

For the twin experiments performed in Sect. 5, we use a more
complex surface mass balance parameterised as a function of
the surface atmospheric temperature Ts(t, r). This simple pa-
rameterisation was used in Bonan et al. (2014) in the context
of ice sheet model initialisation but with a fixed-grid model.
The values of the different parameters involved in this pa-
rameterisation are given in Table A1. The surface mass bal-
ance is the sum of positive accumulation Acc (snow precipi-
tation) and negative ablation Abl (melting) parameterised in
Eqs. (A2) and (A3).

Acc(t, r)= Acc0 e
c0 Ts (A2)

Abl(t, r)=

 Abl0

(
Ts − T0

T0

)2

if Ts > T0

0 otherwise
(A3)

The surface temperature depends on the altitude of the sur-
face s, the distance from the origin and a climate temperature
Tclim(t) evolving in time according the relation

Ts(t, r)= Tclim(t)+ λr + γ s(t, r). (A4)

This parameterisation aims to reproduce qualitatively a typ-
ical surface mass balance over an ice sheet and to include
feedbacks associated with the evolution of the geometry.

Table A1. List of parameter values used for the parameterised sur-
face mass balance.

Parameter Value

Acc0 rate of accumulation 6 m yr−1

Abl0 rate of ablation −5 m yr−1

T0 minimum temperature for −6◦C
ablation

c0 coefficient exponential law 0.115◦C−1

for accumulation
λ longitudinal gradient of 1

111 000
◦C m−1

surface temperature
γ vertical gradient of −0.0063◦C m−1

surface temperature
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