Articles | Volume 23, issue 4
https://doi.org/10.5194/npg-23-307-2016
https://doi.org/10.5194/npg-23-307-2016
Research article
 | 
24 Aug 2016
Research article |  | 24 Aug 2016

A new estimator of heat periods for decadal climate predictions – a complex network approach

Michael Weimer, Sebastian Mieruch, Gerd Schädler, and Christoph Kottmeier

Related authors

A New Versatile Dropsonde for Atmospheric Soundings with HALO – The KITsonde
Christoph Kottmeier, Andreas Wieser, Ulrich Corsmeier, Norbert Kalthoff, Philipp Gasch, Bastian Kirsch, Dörthe Ebert, Zbigniew Ulanowski, Dieter Schell, Harald Franke, Florian Schmidmer, Johannes Frielingsdorf, Thomas Feuerle, and Rudolf Hankers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2817,https://doi.org/10.5194/egusphere-2024-2817, 2024
Short summary
Applying an isotope-enabled regional climate model over the Greenland ice sheet: effect of spatial resolution on model bias
Marcus Breil, Emanuel Christner, Alexandre Cauquoin, Martin Werner, Melanie Karremann, and Gerd Schädler
Clim. Past, 17, 1685–1699, https://doi.org/10.5194/cp-17-1685-2021,https://doi.org/10.5194/cp-17-1685-2021, 2021
Short summary
Identification of droughts and heatwaves in Germany with regional climate networks
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021,https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary
Snow cover duration trends observed at sites and predicted by multiple models
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020,https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Calculating the turbulent fluxes in the atmospheric surface layer with neural networks
Lukas Hubert Leufen and Gerd Schädler
Geosci. Model Dev., 12, 2033–2047, https://doi.org/10.5194/gmd-12-2033-2019,https://doi.org/10.5194/gmd-12-2033-2019, 2019
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary

Cited articles

Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum, Tech. Rep. NESDIS NGDC-24, National Geophysical Data Center, NOAA, Boulder, Colorado, USA, https://doi.org/10.7289/V5C8276M, 2009.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of climate networks with time, Sci. Rep., 2, 666, https://doi.org/10.1038/srep00666, 2012.
Boers, N., Bookhagen, B., Barbosa, H. M. J., Marwan, N., Kurths, J., and Marengo, J. A.: Prediction of extreme floods in the eastern Central Andes based on a complex networks approach, Nat. Commun., 5, 5199, https://doi.org/10.1038/ncomms6199, 2014.
Chikamoto, Y., Timmermann, A., Luo, J.-J., Mochizuki, T., Kimoto, M., Watanabe, M., Ishii, M., Xie, S.-P., and Jin, F.-F.: Skilful multi-year predictions of tropical trans-basin climate variability, Nat. Commun., 6, 6869, https://doi.org/10.1038/ncomms7869, 2015.
Corti, S., Weisheimer, A., Palmer, T. N., Doblas-Reyes, F. J., and Magnusson, L.: Reliability of decadal predictions, Geophys. Res. Lett., 39, L21712, https://doi.org/10.1029/2012GL053354, 2012.
Download
Short summary
This paper is the first time that a complex network approach has been used for analysis of decadal climate predictions. We have developed an alternative estimator of heat periods based on network statistics, which turns out to be superior for parts of Europe. This paper opens the perspective that network measures have the potential to improve decadal predictions.