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Abstract. Regional decadal predictions have emerged in the
past few years as a research field with high application po-
tential, especially for extremes like heat and drought peri-
ods. However, up to now the prediction skill of decadal hind-
casts, as evaluated with standard methods, is moderate and
for extreme values even rarely investigated. In this study, we
use hindcast data from a regional climate model (CCLM) for
eight regions in Europe and quantify the skill of the model
alternatively by constructing time-evolving climate networks
and use the network correlation threshold (link strength) as
a predictor for heat periods. We show that the skill of the
network measure to estimate the low-frequency dynamics of
heat periods is superior for decadal predictions with respect
to the typical approach of using a fixed temperature threshold
for estimating the number of heat periods in Europe.

1 Introduction

Decadal prediction is a relatively new field in climate re-
search. Skillful prediction of climate from years up to
a decade would be beneficial for our society, economy and
for a better adaption to a changing climate. Within the large
international Coupled Model Intercomparison Project Phase
5 (CMIP5 Taylor et al., 2012) global decadal predictions of
climate key variables like temperature and precipitation have
been performed with state-of-the-art Earth system models.
In order to validate the prediction skill of the models so-
called hindcast experiments are conducted. That means the
models are initialized with observations (e.g., in 1961) and
then run freely for 10 years and stop at the end of 1970. In
1971, the models are again initialized and start to run for an-

other 10 years and so on. More advanced approaches of ini-
tializing every year have followed as well. These hindcasts
can be evaluated against observational data to quantify the
prediction skill of the models depending on the lead time,
which is the time range between the initialization and the
forecast datum of interest. In recent years, several studies on
decadal predictions have shown the potential of these ini-
tialized (global) model runs (e.g., Keenlyside et al., 2008;
Müller et al., 2012; Matei et al., 2012; van Oldenborgh et al.,
2012; Corti et al., 2012; Doblas-Reyes et al., 2013; García-
Serrano et al., 2013; Smith et al., 2013; Meehl et al., 2014;
Chikamoto et al., 2015). However most studies concentrate
on regions like the tropical Pacific or North Atlantic and
on slowly evolving variables like sea-surface temperature.
These regions receive their predictability from large-scale
processes like the Atlantic Meridional Overturning Circula-
tion (AMOC) or Pacific Decadal Oscillation (PDO) and thus
allow the extraction of predictable signals out of the noise.
To be useful for society and climate change adaption, re-
gional climate predictions are required, which should pro-
vide skillful forecasts on smaller regions and shorter periods,
and they include climate extreme events on populated land
areas like the European continent. The European climate is
more connected to short-term processes like the North At-
lantic Oscillation (NAO), which is to a certain extent pre-
dictable on seasonal scales, whereas the decadal predictable
signal is weak (Scaife et al., 2014), which has been shown
also for temperature and precipitation in large projects like
ENSEMBLES (MacLeod et al., 2012). Further, the complex
orography with the Alps in the center contributes to a mani-
fold of general weather situations and hence to a complex cli-
mate (e.g., World Climate Research Programme Coordinated
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Regional Downscaling Experiment for Europe (CORDEX-
EU), Jacob et al., 2013; Giorgi et al., 2009). Nevertheless,
the European continent is influenced by the AMOC and thus
this process may yield to a certain predictability, although
the signal-to-noise ratio is most probably small. Up to now,
the prediction skill for Europe is weaker than for regions
such as the South Pacific or North Atlantic. Mieruch et al.
(2014) have used a regional decadal hindcast ensemble for
Europe and detected moderate prediction skill for summer
and winter temperature and summer precipitation anomalies
within the lead time of 5 years. Eade et al. (2012) analyzed
the predictability of temperature and precipitation extremes
in a global model and found a moderate but significant skill
(correlation) for seasonal extremes. They also found skill be-
yond the first year, but this skill arose from external forcing.
Thus, Eade et al. (2012) compared initialized climate pre-
dictions with uninitialized projections to evaluate the skill
gained by initializing and excluding the external forcing.
They found that the “impact of initialization is disappoint-
ing”.

Another relatively new field in climate research has been
established, namely the complex climate network approach.
The general idea of climate networks is to consider climate
time series, for example, at the grid points of a climate model
as nodes of the network and the statistical connection be-
tween the time series as links of the network. A link be-
tween two arbitrary time series (geolocations) exists if the
correlation measure between the time series exceeds a cer-
tain threshold.

The climate network community has been very active
in recent years. Tsonis et al. (2007) proposed “A new dy-
namical mechanism for major climate shifts” and explained,
e.g., decadal shifts in global mean temperature (Tsonis and
Swanson, 2012). Radebach et al. (2013) discriminated dif-
ferent El Niño types using the network approach, Ludescher
et al. (2013) developed a network method to improve El Niño
forecasting, and Donges et al. (2011) revealed a connection
between (paleo-)climate variability and human evolution us-
ing recurrence networks, which are similar to the complex
climate networks. Generally, it has been shown that climate
networks contain useful information for climate applications,
e.g., the relation between climate and topography found by
Peron et al. (2014), dynamics of the sun activity using visi-
bility graphs (Zou et al., 2014), and the prediction of extreme
floods (Boers et al., 2014).

In this paper, we exploit the idea to use an alternative heat
period estimator, based on complex climate networks, and
show that its skill is superior to the typical approach of using
a fixed temperature threshold for prediction of heat periods
on timescales up to a decade.

In Sect. 2 we introduce the daily maximum temperature
data used in this study and the motivation for our approach
in Sect. 3. Section 4 describes our approach, which includes
the preparation of the data, the definition of heat periods, and
the construction of time-evolving climate networks. The re-

sults for applying the new approach to hindcasts are shown
in Sect. 5. Finally, we give the conclusions and an outlook in
Sect. 6.

2 Data

We apply the climate network approach to a decadal predic-
tion ensemble generated within the German research project
MiKlip (Mittelfristige Klimaprognosen, Decadal Climate
Prediction; e.g., Kadow et al., 2015) by the regional COSMO
model in CLimate Mode (COSMO-CLM or CCLM) (Doms
and Schättler, 2002). CCLM has been used in numerous
studies recently (e.g., in Kothe et al., 2014; Dosio et al.,
2015). A comprehensive overview can be found here: http://
www.clm-community.eu. CCLM has been used to downscale
global decadal predictions from the Earth System Model
of the Max Planck Institute for Meteorology (MPI-ESM,
Stevens et al., 2013). From a suite of different decadal pre-
diction experiments we have selected the so-called regional
baseline 0 ensemble. This ensemble consists of 10 members,
each covering the period 1961–2010 for the European region
(according to CORDEX-EU Jacob et al., 2013; Giorgi et al.,
2009) on a 0.22◦ grid. This ensemble has already been used
by Mieruch et al. (2014).

The regional baseline 0 ensemble (based on the global
MPI-ESM model) has been initialized every 10 years (1961,
1971, 1981, 1991, 2001). Within a decade the CCLM model
runs freely, except for the prescription of the atmospheric
boundary conditions by the global MPI-ESM model.

More details on the development of the ensemble and the
initialization can be found in Matei et al. (2012), Müller et al.
(2012), and Mieruch et al. (2014).

In the study presented here we use daily maximum near-
surface temperatures from the CCLM model and from the
E-OBS v8.0 gridded climatology (Haylock et al., 2008) for
the European continent. The E-OBS data basically are mea-
surements interpolated to a regular latitude–longitude grid.

For our comparison, we use the so-called Prudence re-
gions http://prudence.dmi.dk/, namely British Isles, Iberian
Peninsula, France, Central Europe, Scandinavia, Alps, the
Mediterranean, and Eastern Europe (shown in Fig. 1).

3 Motivation

Generally, heat periods are maximum temperature values
persisting for several days and occurring on spatially ex-
panded regions. This means that many temperature time
series (grid points) behave in a “cooperative mode” (see,
e.g., Ludescher et al., 2013). This cooperative state can be
described by the link strength, i.e., essentially the correla-
tion between time series, of a climate network. Thus, the link
strength of a climate network could turn out to be the bet-
ter heat period estimator for model data, because it is inde-
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Figure 1. The eight Prudence regions (topography: ETOPO1;
Amante and Eakins, 2009).

pendent of the typically critical thresholds used in classical
extreme value detection.

The standard estimator for heat periods according to the
World Meteorological Organization (WMO) is that the daily
maximum temperature is 5K above the 1961–1990 mean
maximum temperature at five consecutive days at least (Frich
et al., 2002). Thus, the standard method to compare the pre-
diction skill of heat periods between observations and model
would be to count the heat periods, e.g., for each year in an
observational reference data set and similarly in the model
data, both according to the WMO definition (cf. Fig. 2).

A crucial problem of the standard estimator for model pre-
dictions is the inherent static threshold used to detect heat
periods. Although this threshold can be adapted to the model
climatology (as we do it in Sect. 4.2) the problem is that it is
still likely that the model slightly undershoots or otherwise
slightly misses the threshold if a heat period according to the
definition at the very beginning of this section occurs, assum-
ing the model exhibits at least some predictive skill.

To account for this situation in decadal predictions we pro-
pose a new method, based on complex climate networks, to
detect heat periods, which is independent of a fixed temper-
ature threshold (see Sect. 4.3). Again we want to empha-
size that no new method for the detection of heat periods
is needed, if past observational data or short-term forecasts
are used. The WMO-based definition works well. However,
the increased uncertainty in decadal predictions requires new
methods to handle climate extremes like heat periods.

The following schematic examples in Figs. 2a–c and 3 il-
lustrate why the complex network approach is able to de-
tect heat periods without using a temperature threshold. The
black curves represent (artificially generated) daily maxi-
mum temperature model data. Further we assume that one
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Figure 2. Schematical illustration of our approach (temperature
anomaly on the y axis): (a) model detects correctly one heat pe-
riod above the threshold, (b) model underestimates the number of
heat periods, and (c) model overestimates the number of heat peri-
ods (for details see text).
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Figure 3. (a) Artificial time series including three heat periods
(dashed lines). (b) Relation between the network link strength and
the number of heat periods, based on 100 artificial time series.

heat period has actually occurred in Fig. 2a–c persisting for
15days from day 11 to day 25. Accordingly the black curves
show different possible model results if the model exhibits
predictive skill to detect a signal out of the noise.

Figure 2a depicts that using the standard approach the
model correctly detects one heat period above the threshold.
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In Fig. 2b the model detects a signal, but this signal is too
weak to cross the threshold; thus no heat period would have
been detected and the model underestimates the number of
heat periods. Overestimation of the number of heat periods
happens in Fig. 2c, where the model detects two heat peri-
ods (5 days above the threshold at the edges and below the
threshold in between). Now, the key point for our motivation
is that a heat period constitutes an event in space and time;
thus in a certain region, many time series would look like the
ones in Fig. 2. The link strength of a network would be given
by the correlation between these coherent time series. Since
the signals in Fig. 2a–c look quite similar, the link strength
of the network would thus be very similar in all three cases.
Whereas the standard approach would correctly estimate the
heat period in only one case (Fig. 2a), the networks’ link
strength would correctly estimate it in all three cases, given
a proper relation between link strength and heat periods.

To test the relation in principle, we created 100 artificial
time series (Gaussian noise) and included successively 0–9
heat periods. Figure 3a shows such a time series with three ar-
tificial heat periods indicated by the dashed lines. In a follow-
ing step, we calculated the mean correlation (link strength)
between these 100 coherent time series dependent on the
number of included heat periods depicted in Fig. 3b. As can
be seen, more heat periods are connected with a larger link
strength. This simplified test shows that a proper relation be-
tween link strength and heat periods could exist. Note that
Fig. 3b is not a calibration curve for real data, because we
simply used Gaussian noise to create the time series.

It is clear that the argumentation above concerning the link
strength as a heat period estimator is quite simplistic, but it
elucidates our approach and the main idea.

4 Method

Our hypothesis is that complex network measures may be
better estimators for climate extremes than standard mea-
sures like absolute threshold exceedances.

4.1 Data pre-processing

Before using the complex networks in general it is necessary
to remove stationary biases and long-term variabilities from
the climate time series (Donges et al., 2009).

We remove bias, trend, and the average annual cycle by
subtracting a standard linear regression including a Fourier
series from the time series according to

yi(t)= δi +ωi t +

2∑
j=1

αi,j sin
(

2πj · t
365.25

)
+βi,j cos

(
2πj · t
365.25

)
, (1)

where yi(t) represents daily maximum temperature from
1961 to 2010, δi is the intercept, ωi is the linear trend, and
αi,j and βi,j represent the Fourier coefficients. Equation (1)
is evaluated individually at each grid point i = 1, . . .,N .

In order to minimize the influence of cold periods on the
network approach (details below in Sect. 4.3), we remove
the data lower than the 10 % quantile. This filtering has no
influence on the standard estimator of heat periods. Then, the
months from June to September are selected because we are
interested in summer heat periods.

These summer anomalies are used for both the standard
approach, defined in Sect. 4.2, and the new approach illus-
trated in Sect. 4.3. We introduce a skill measure to compare
the number of heat periods with values of the link strength
(Sect. 4.4). Finally we present a simple approach to apply
the new estimator to real forecasts in Sect. 4.5.

4.2 The standard approach for determining the
number of heat periods

In this study, we define a heat period for E-OBS observa-
tional data as a time range when the anomaly maximum tem-
perature (according to Eq. 1) exceeds a fixed threshold of 3K
at 5 consecutive days at least and additionally includes no
less than 20 % of the grid points in the area of interest. This
choice has been made to observe events frequently enough
for reliable statistics while simultaneously ensuring impor-
tant impacts.

To account for the inherent model bias it is essential to
adjust the temperature threshold to the model climate. Thus,
we estimate the percentile P3 K corresponding to the 3K E-
OBS threshold for the complete time from 1961 to 2010 and
the area of interest. Accordingly, we use this percentile as
the threshold for heat periods for the model data, which is
nevertheless fixed for the whole area and time range; the ar-
gumentation of Sect. 3 still holds for the model data. Table 1
shows this threshold in K for the eight Prudence regions, es-
timated from the CCLM ensemble means. In the following,
we will refer to this definition as the standard approach.

4.3 The new approach

As an alternative heat period estimator, we propose to use
the time-varying link strength Wτ (τ represents the years) of
a network, based on modeled daily maximum temperature
time series. The link strength Wτ is the correlation thresh-
old between time series, which is needed to construct a net-
work of a given edge density. Accordingly we want to show
thatWτ has the potential to be a better estimator for observa-
tional heat periods than the standard estimator. This approach
is similar to that used by Ludescher et al. (2013), who fore-
casted El Niño events using the link strength of a network and
showed the superiority to standard sea surface temperature
predictions by state-of-the-art climate models. By contrast to
Ludescher et al. (2013), however, we use the predicted 2m
maximum temperature of CCLM to create the networks and
to forecast the number of heat periods.

To apply the method we proceed as follows. Suppose we
have initialized our climate model in the year 2001 with the
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Table 1. Ensemble mean variation of the temperature threshold calculated for heat periods with the standard approach in CCLM data (see
Sect. 4.2).

Prudence region 1 2 3 4 5 6 7 8

Temperature threshold (in K) 3.16 3.38 2.81 2.52 2.66 2.85 3.46 2.79

ocean, soil, ice, and atmospheric state at that time. Accord-
ingly the climate model runs freely for 10 years, i.e., a ret-
rospective decadal climate prediction. Now we are interested
in the capability of the model to represent heat periods in
summer. Based on the standard approach of counting heat
periods (see Sect. 4.2) we could determine the prediction
skill of the model in forecasting (hindcasting) the number
of heat periods. Our approach, in contrast, is to create a time-
evolving complex network with fixed edge density (Berezin
et al., 2012; Radebach et al., 2013; Ludescher et al., 2013;
Hlinka et al., 2014) from the modeled daily maximum tem-
perature time series and to use, as mentioned, the dynamics
of the link strength Wτ as a heat period estimator.

Following our aim to use a network measure as a heat
period estimator we construct a complex network from the
daily maximum temperature model data. Here we use an
undirected and unweighted simple graph. Thus, the network
consists of vertices V , which are the spatial grid points of
our temperature data, and edges (connections) E, which are
added between vertices and represent the statistical interde-
pendence between the anomaly daily maximum temperature
time series. This complex climate network can be represented
by the symmetric adjacency matrix A with

Aij =

{
0 if ij not connected
1 if ij connected , (2)

where i and j represent the vertices, i.e., time series at grid
points i,j = 1, . . .,N . Two grid points are connected if the
correlation between their time series exceeds a predefined
threshold. The statistical interdependence between pairs {ij}
(self-loops {ii} are not allowed) of time series is measured
using the Pearson (standard) correlation coefficient (Donges
et al., 2009). From sensitivity studies we found that correla-
tions between time series on the order of 0.7–0.9 yield pat-
terns with not too few and not too many connections. This is
important in order to resolve temporal dynamics of the net-
work. Correlations on this order of magnitude are significant
on the 5 % level for the here used summer time series with
length of about 120 days. However, since we want to ana-
lyze different regions in Europe and to generate comparable
results we decided to alternatively create our networks with
a constant edge density (ratio of number of actual connec-
tions to maximum number of connections) of

ρ = E

/(
N

2

)
= 〈ki〉

/
(N − 1)= 0.3 , (3)

where E is the number of edges and 〈ki〉 is the mean node
degree with

ki =

N∑
j=1

Aij , (4)

which gives the number of connections of a vertex i.
As mentioned above we removed the data lower than the

10 % quantile, to avoid that the link strengthWτ is influenced
by possible cold periods in the data. We tested smaller quan-
tiles (5 %) and larger quantiles (20 %) and found that the re-
sults are robust: they changed only slightly. The above used
parameters (like the density of 0.3) and the 10 % filtering
turned out to be optimal for our data. For other data, these
parameters most probably have to be adjusted. Additionally,
by removing the data lower than the 10 % quantile, gaps in
the time series are generated. To ensure significance, we take
into account only correlation coefficients where the two un-
derlying time series exhibit 60 common data points (days).
An effective way to estimate the link strength of a network
with an edge density of 0.3 is to calculate the 70 % quantile
of all correlation coefficients involved in the network.

In a similar way as Berezin et al. (2012) we analyze the
temporal variation of the link strength Wτ , i.e the correlation
threshold between time series (grid points) for a single year
τ (summer) from 1961 to 2010. Thus, instead of using the
node degree as an estimator of heat periods we use the link
strength Wτ .

Using the definitions above, we finally construct a network
for the summer months of each year based on anomaly max-
imum temperature model data. The quantity whose year-to-
year variation we are interested in is the link strength Wτ ;
however, since we are interested in decadal variability, and
since we do not expect the model to represent the year-to-
year fluctuations, we applied a 10-year moving average fil-
ter to both link strength and number of heat periods, sub-
sequently. Since the CCLM model has been initialized every
decade (1961, 1971,. . . , 2001) we apply the filter only within
a decade in order to avoid transferring information between
decades. At the boundaries of the decades, the time range for
the running average is shortened: for instance at the begin-
ning of the decade, we use only the 6-year mean (e.g., from
2001 to 2005), in the second year a 7-year mean, and so on.

4.4 Comparison of the different quantities

To quantify the prediction skill of the model, we calculate
the absolute mean difference (see Eqs. 6 and 7) between the

www.nonlin-processes-geophys.net/23/307/2016/ Nonlin. Processes Geophys., 23, 307–317, 2016



312 M. Weimer et al.: A new estimator for heat periods in decadal climate predictions

number of heat periods in E-OBS (o) and CCLM (m) and the
CCLM link strength (Wτ ). To be comparable we normalized
the time series to the range {0,1} by a subtraction of the min-
imum of the time series and accordingly a division by the
maximum for the whole time span, e.g., for the number of
heat periods in CCLM:

µrd,τ =

(
mrd,τ −

50
min
τ=1

(
mrd,τ

))/ 50
max
τ=1

(
mrd,τ −

50
min
τ=1

(
mrd,τ

))
, (5)

where r denotes the European region, d stands for the decade
and τ represents the years. The similarly rescaled E-OBS
number of heat periods will be denoted as� and the rescaled
CCLM link strength as ψ .

Thus the absolute mean difference (based on normalized
data) between observation and model heat periods for a re-
gion r and a decade d is given by

Mr
d(µ)=

∣∣∣∣∣ 1
10

10∑
τ=1

(
�rd,τ −µ

r
d,τ

)∣∣∣∣∣= ∣∣∣�rd −µrd ∣∣∣ , (6)

and the mean difference between observation heat periods
and model link strength is

Mr
d(ψ)=

∣∣∣∣∣ 1
10

10∑
τ=1

(
�rd,τ −ψ

r
d,τ

)∣∣∣∣∣= ∣∣∣�rd −ψ rd ∣∣∣ , (7)

where the bars in the above equations denote temporal aver-
ages. Therefore, if the absolute mean difference is about 0,
observations and model agree well, whereas a difference of
about 1 denotes the maximum discrepancy.

4.5 Usage of the new estimator in predictions

For a real application of our method to estimate the num-
ber of heat periods in forecasts, a calibration step using ob-
servational data o is needed to convert the link strength of
the model to the number of heat periods my (the index y
stands for year in the future). Therefore long hindcast data
are needed. Based on our analysis we suggest as a first at-
tempt to apply a linear conversion from link strength Wy to
the number of heat periods my , which is also supported by
our tests shown in Fig. 3:

mry,W =
W r
y −min50

τ=1(W
r
τ )

max50
τ=1(W

r
τ )−min50

τ=1(W
r
τ )

·

(
50

max
τ=1

(orτ )−
50

min
τ=1

(orτ )

)
+

50
min
τ=1

(orτ ). (8)

This linear approach corresponds to our skill analysis, where
a linear connection between the link strength and the number
of heat periods is assumed as well. Again we note that this
study presents only the skill analysis of hindcast data and
Eq. (8) is actually not used now.
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Figure 4. Number of heat periods (1961–2010) in France (Pru-
dence 3) in summer from E-OBS o (solid line) and corresponding
E-OBS link strength W (dashed line). The M’s denote the absolute
mean difference within a decade between E-OBS standard approach
and the E-OBS link strength after normalization (cf. Eq. 7).

5 Results

Figure 4 depicts the number of observed heat periods (solid
line) and the corresponding link strength (dashed line) re-
trieved from the complex evolving network, both from E-
OBS data for France (Prudence region 3), and shows that
the link strength Wτ is a suitable estimator of heat periods.
It shows that the network contains climate information in the
sense that the dynamics of the link strength Wτ is similar to
the dynamics of heat periods, both based on the same data.
So, the link strength can here be considered as an estimator
for heat periods, which is comparable to the standard heat
period estimator. Jumps between the decades occur as the
running mean filter is only applied within the decades (see
Sect. 4.3). The corresponding figures for the seven other Pru-
dence regions can be found in the supplementary material.

As an example, Prudence region 8 (Eastern Europe) is
a region where the network method performs better than
the standard approach (Figs. 5 and 6). Figure 5 shows the
E-OBS number of heat periods o (black) and the CCLM
ensemble mean number of heat periods m (blue) for East-
ern Europe together with the interquartile range (25th and
75th percentiles), and Fig. 6 shows again the E-OBS number
of heat periods now compared to the CCLM link strength.
Comparing the absolute mean differences, denoted as M in
the two figures, reveals that our network approach enhances
the skill in four decades, namely 1970s, 1980s, 1990s, and
2000s. Especially the 1970s, 1980s, and 1990s show a clear
improvement and our network approach better reflects the
low-frequency dynamics of the heat periods. The 2000s seem
to be off in both model cases, the number of heat periods,
and the link strength, which indicates a failed model initial-
ization.

In order to see how the prediction skill of the standard
as well as the network heat period estimators vary with the
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Figure 5. Number of heat periods (1961–2010) in Eastern Europe
(Prudence 8) in summer from E-OBS o (black) and CCLM num-
ber of heat periods (blue: ensemble mean and interquartile range).
The M’s denote the absolute mean difference within a decade be-
tween E-OBS and the CCLM ensemble mean after normalization
(see Eq. 6).
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Figure 6. Number of heat periods (1961–2010) in Eastern Europe
(Prudence 8) in summer from E-OBS o (black) and CCLM link
strength or correlation threshold W (red: ensemble mean and in-
terquartile range). The M’s denote the absolute mean difference
within a decade between E-OBS and the CCLM ensemble mean
after normalization (see Eq. 7).

considered region, we performed the same analysis as above
for the eight Prudence regions in Europe and for the 1960s,
1970s, 1980s, 1990s, and 2000s. The corresponding figures
for the other regions can be found in the Supplement.

To summarize the results we calculated the absolute mean
differences (Eqs. 6 and 7) for all the Prudence regions, see
Fig. 7. Blue colors in the panels stand for low values (high
skill) whereas red colors depict high values (low skill) in the
absolute mean difference.

The left panel of Fig. 7 shows how the network method
performs using only E-OBS data similar to Fig. 4. Therefore
we estimated the number of heat periods in the E-OBS data
and the link strength (from the complex network) of the E-
OBS data and accordingly calculated the differences (after

normalization, cf. Eq. 5) between these two estimators. As
can be seen blue colors dominate the plot, i.e., low differ-
ences and hence high skill. Thus, this reference test shows
that the link strength is coupled to the number of heat peri-
ods in maximum daily summer temperature data and so can
be used as an alternative, possibly better, heat period esti-
mator. There are some exceptions like the 1990s and 2000s
of Prudence region 6. Further investigation on the reasons of
these cases has to be performed.

The middle panel of Fig. 7 shows how well the standard
method performs in predicting heat periods using E-OBS ob-
servations and CCLM model data. The right panel indicates
the performance of the new network method in estimating
heat periods using E-OBS and CCLM data. In contrast to
the relatively low values in the left panel, the values in the
middle and right panels on the one hand are higher for many
decades and Prudence regions. On the other hand, the visual
impression is that the absolute differences of the right panel
are slightly smaller than those of the middle panel, especially
during the 1990s and 2000s.

Thus, we can conclude with Fig. 7 that the method works
in principle but that the uncertainties in the model simula-
tions lead to increased differences between observations and
model simulations. In addition, the link strength seems to
work better than the standard approach for the model sim-
ulations with respect to the observations.

To quantify this last statement, we calculated the differ-
ence between the middle and right panels of Fig. 7 (see
Fig. 8). This basically shows which method performs bet-
ter regarding the eight regions (columns) and five decades
(rows). Blue color in Fig. 8 indicates that the network ap-
proach performs better (Mr

d(ψ)<M
r
d(µ)) and red color

stands for a better performance of the standard approach
(Mr

d(ψ)>M
r
d(µ)). White boxes in Fig. 8 denote a tie be-

tween the methods in the case of too small differences
(|Mr

d(ψ)−M
r
d(µ)| ≤ 0.05). The matrix of Fig. 8 shows that

the network method is clearly superior in three regions (5,
7, 8) and slightly superior in two regions (4, 6), the standard
approach is superior in two regions (1, 3), and in region 2 we
observed a tie, i.e., no clear result.

The crucial question is whether this result indicates that
the network method performs significantly better than the
standard approach or not. However, testing for statistical sig-
nificance bears serious problems. There are so many fac-
tors involved in the analysis, i.e., the models themselves, the
downscaling, the ensemble, the initialization, the different re-
gions, the filtering, etc. that any null hypothesis would be not
well-posed and any test would be questionable. This issue is
discussed in detail in a 2013 paper entitled “Testing ensem-
bles of climate change scenarios for ‘statistical significance”’
by climate statistics instances of Hans von Storch and Francis
Zwiers (von Storch and Zwiers, 2013), who claim that “a sta-
tistical null hypothesis may not be a well-posed problem. . . ”
and “Even if statistical testing were completely appropriate,
the dependency of the power of statistical tests on the sam-
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ple size n remains a limitation on interpretation.” and finally
“propose to employ instead a simple descriptive approach for
characterising the information in an ensemble. . . ”. Although
we totally agree with the argumentation by von Storch and
Zwiers (2013) that a “classical” significance test would most
probably fail in our analysis, we think that alternative signif-
icance tests, based on bootstrapping or surrogate data, could
definitely help obtain a better interpretation of the results.
Thus, we construct the following significance test based on
surrogate data to answer the following question: what is the
probability of getting a rank matrix like the one in Fig. 8 by
chance?

First, we have to define what is the possibly “significant”
characteristic of the matrix in Fig. 8. It is, as we concluded
above, that the network method is superior in five regions.
Thus the question is the following: what is the probability to

Table 2. Probability that blue matrix elements in Fig. 8 dominate in
n regions by chance. Half of the elements are colored blue and red,
respectively, and eight white elements are randomly added subse-
quently.

Number of regions n 1 2 3 4 5 6 7 8

Probability in % 100 99 82 35 5 0.1 0 0

observe at least five regions in which we have in each at least
one blue matrix element more than a red one by chance? Ac-
cordingly we constructed matrices like in Fig. 8 by randomly
coloring 20 matrix elements blue and 20 red. Afterwards we
colored 8 matrix elements white as in Fig. 8. Finally, we re-
peated this surrogate procedure 1000 times and counted the
cases (regions) where the blue matrix elements dominate. Ta-
ble 2 shows the probabilities that blue matrix elements domi-
nate in n regions. Since we have 16 blue elements and 16 red,
it is sure that blue dominates in n= 1 region, and it is impos-
sible to dominate in n= 7 and n= 8 regions. As can be seen
from Table 2 the probability of dominating in n= 5 regions
by chance is only about 5 %; thus the results of our network
approach have to be stated significant. Due to the symmetry
of the test, the same argumentation is valid for red matrix
elements. Dominating in n= 2 regions, as achieved by the
standard approach (Fig. 8), can be realized easily by chance
with a probability of approx. 99 %. Page 1 in the Supplement
shows an example of 12 of these randomly generated matri-
ces, where one matrix, depicted by a black frame, fulfills the
“significance” criterion.

6 Conclusions and outlook

We presented a novel approach examining heat periods using
a complex network analysis. We have investigated the pre-
dictability of the slow dynamics of the occurrence of heat pe-
riods in Europe based on daily maximum near-surface tem-
perature data.
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We found that the network approach is superior (signifi-
cance is ≈ 5 %) to the standard approach in estimating heat
periods in Europe, hence highlighting the potential of net-
work methods to improve the skill estimation in decadal pre-
diction experiments. Picking up our hypothesis and simpli-
fied argumentation from Sect. 3, the crucial point why we
detect heat periods with the network link strength is that heat
periods are cooperative events in space and time. Thus, the
link strength can be used as an estimator of heat periods. The
drawback of the standard approach is most probably the in-
flexible threshold for the detection of heat periods (cf. Fig. 2).
If the climate model contains the signal of a heat period, but
with a slightly too small amplitude, the threshold will not
be crossed and no heat period will be detected. In contrast,
the complex climate network does not depend on such fixed
thresholds and can use this information, which makes it the
more robust estimator of heat periods.

The general prediction skill of climate in Europe using
standard measures is still moderate. In this sense our work
adds new aspects to our previous study (Mieruch et al.,
2014) and also the work of Eade et al. (2012), who found
a strong variation of skill with region and decade. In essence,
we found regions and decades in Europe where our climate
model output, or more specifically the used network estima-
tor, follows the slowly evolving dynamics of observed heat
periods. We also found regions and decades in which the net-
work estimator is not able to represent the observational ref-
erence. Understanding of this variability in prediction skill is
one of the future challenges of decadal predictions.

Concluding, our approach shows that the complex climate
networks approach yields meaningful climate information
and has the potential to improve skill measures within the
framework of climate prediction. It is the first time that such
network techniques have been used in climate predictions.
Since climate or decadal predictions aim to predict natural
variability on the order of years, suitable statistics are needed.
Natural variability on the order of years evolves highly dy-
namically and often nonlinearly. Thus, the complex climate
networks could bear the potential to be very useful in climate
predictions. Our approach, which is even based on the most
simple network measure, the node degree (or as we used it
the link strength), yields optimistic results. So, we think that
our analysis could be the starting point for using the com-
plex networks in climate predictions. Using other measures
and/or multivariate data could turn out to be the better way
of analyzing predictions of natural variability years ahead
than using methods from short- or medium-range forecast-
ing. Further, from the network perspective it would be in-
teresting to analyze other network measures like clustering,
similarities, or path lengths and how they are connected to
climate evolution. The incorporation of other relevant vari-
ables like precipitation, wind, or soil moisture into the net-
work is an appealing aspect. From a physical or climatolog-
ical point of view it is important to understand why the net-
work measures are able to represent climate dynamics, which

could also contribute to a better understanding of the sources
of decadal predictability. Thus, the incorporation and inves-
tigation of processes like the AMOC, PDO, or NAO together
with complex networks and climate prediction might be an
option for the future.

7 Data availability

E-OBS can be downloaded via the website www.ecad.eu.

The Supplement related to this article is available online
at doi:10.5194/npg-23-307-2016-supplement.
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