Articles | Volume 23, issue 4
https://doi.org/10.5194/npg-23-189-2016
https://doi.org/10.5194/npg-23-189-2016
Research article
 | 
08 Jul 2016
Research article |  | 08 Jul 2016

Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model

Bo-Wen Shen

Related authors

Revisiting Lorenz’s and Lilly’s Empirical Formulas for Predictability Estimates
Bo-Wen Shen, Roger Pielke Sr., and Xubin Zeng
EGUsphere, https://doi.org/10.13140/RG.2.2.32941.15849,https://doi.org/10.13140/RG.2.2.32941.15849, 2024
Preprint archived
Short summary
On periodic solutions associated with the nonlinear feedback loop in the non-dissipative Lorenz model
B.-W. Shen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2016-40,https://doi.org/10.5194/npg-2016-40, 2016
Revised manuscript not accepted
Short summary
Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term
B.-W. Shen
Nonlin. Processes Geophys., 22, 749–764, https://doi.org/10.5194/npg-22-749-2015,https://doi.org/10.5194/npg-22-749-2015, 2015
Short summary
On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz model
B.-W. Shen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-1-519-2014,https://doi.org/10.5194/npgd-1-519-2014, 2014
Revised manuscript not accepted

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Dynamic-Statistic Combined Ensemble Prediction and Impact Factors on China’s Summer Precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3762,https://doi.org/10.5194/egusphere-2024-3762, 2024
Short summary
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3628,https://doi.org/10.5194/egusphere-2024-3628, 2024
Short summary
Explaining the high skill of Reservoir Computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk Dijkstra
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-24,https://doi.org/10.5194/npg-2024-24, 2024
Revised manuscript accepted for NPG
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary

Cited articles

Adler, J.: R in a nutshell, O'Rielly, Sebastopol, CA, 699 pp., 2012.
Anthes, R.: Turning the tables on chaos: is the atmosphere more predictable than we assume?, UCAR Magazine, available at: https://www2.ucar.edu/atmosnews/opinion/turning-tables-chaos-atmosphere-more-predictable-we-assume-0 (last access: 14 December 2015), 2011.
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J. M.: Lyapunov Characteristic Exponents fro Smooth Dynamical Systems and for Hamiltonian Systems; A method for computing all of them. Part 1: Theory, Meccanica, 15, 9–20, 1980.
Biswas, R., Aftosmis, M. J., Kiris, C., and Shen, B.-W.: Petascale computing: Impact on future NASA missions, in: Petascale Computing: Architectures and Algorithms, edited by: Bader, D., Chapman and Hall/CRC Press, Boca Raton, FL, 29–46, 2007.
Blender, R. and Lucarini, V.: Nambu representation of an extended Lorenz model with viscous heating, Physica D, 243, 86–91, 2013.
Download
Short summary
We construct a seven-dimensional Lorenz model (7DLM) to discuss the impact of an extended nonlinear feedback loop on solutions' stability and illustrate the hierarchical scale dependence of chaotic solutions. The 7DLM requires a much larger critical value for the Rayleigh parameter (rc ∼ 116.9) for the onset of chaos. For chaotic solutions with r = 120, high correlation coefficients among the modes at different scales indicate hierarchical scale dependence.
Share