Articles | Volume 23, issue 4
https://doi.org/10.5194/npg-23-189-2016
https://doi.org/10.5194/npg-23-189-2016
Research article
 | 
08 Jul 2016
Research article |  | 08 Jul 2016

Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model

Bo-Wen Shen

Related authors

Revisiting Lorenz’s and Lilly’s Empirical Formulas for Predictability Estimates
Bo-Wen Shen, Roger Pielke Sr., and Xubin Zeng
EGUsphere, https://doi.org/10.13140/RG.2.2.32941.15849,https://doi.org/10.13140/RG.2.2.32941.15849, 2024
Short summary
On periodic solutions associated with the nonlinear feedback loop in the non-dissipative Lorenz model
B.-W. Shen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2016-40,https://doi.org/10.5194/npg-2016-40, 2016
Revised manuscript not accepted
Short summary
Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term
B.-W. Shen
Nonlin. Processes Geophys., 22, 749–764, https://doi.org/10.5194/npg-22-749-2015,https://doi.org/10.5194/npg-22-749-2015, 2015
Short summary
On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz model
B.-W. Shen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-1-519-2014,https://doi.org/10.5194/npgd-1-519-2014, 2014
Revised manuscript not accepted

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary

Cited articles

Adler, J.: R in a nutshell, O'Rielly, Sebastopol, CA, 699 pp., 2012.
Anthes, R.: Turning the tables on chaos: is the atmosphere more predictable than we assume?, UCAR Magazine, available at: https://www2.ucar.edu/atmosnews/opinion/turning-tables-chaos-atmosphere-more-predictable-we-assume-0 (last access: 14 December 2015), 2011.
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J. M.: Lyapunov Characteristic Exponents fro Smooth Dynamical Systems and for Hamiltonian Systems; A method for computing all of them. Part 1: Theory, Meccanica, 15, 9–20, 1980.
Biswas, R., Aftosmis, M. J., Kiris, C., and Shen, B.-W.: Petascale computing: Impact on future NASA missions, in: Petascale Computing: Architectures and Algorithms, edited by: Bader, D., Chapman and Hall/CRC Press, Boca Raton, FL, 29–46, 2007.
Blender, R. and Lucarini, V.: Nambu representation of an extended Lorenz model with viscous heating, Physica D, 243, 86–91, 2013.
Download
Short summary
We construct a seven-dimensional Lorenz model (7DLM) to discuss the impact of an extended nonlinear feedback loop on solutions' stability and illustrate the hierarchical scale dependence of chaotic solutions. The 7DLM requires a much larger critical value for the Rayleigh parameter (rc ∼ 116.9) for the onset of chaos. For chaotic solutions with r = 120, high correlation coefficients among the modes at different scales indicate hierarchical scale dependence.