Articles | Volume 23, issue 1
https://doi.org/10.5194/npg-23-13-2016
https://doi.org/10.5194/npg-23-13-2016
Research article
 | 
27 Jan 2016
Research article |  | 27 Jan 2016

Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

T. Soares dos Santos, D. Mendes, and R. Rodrigues Torres

Related authors

Comparison results for the CFSv2 hindcasts and statistical downscaling over the northeast of Brazil
G. A. M. Silva and D. Mendes
Adv. Geosci., 35, 79–88, https://doi.org/10.5194/adgeo-35-79-2013,https://doi.org/10.5194/adgeo-35-79-2013, 2013

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary

Cited articles

Alsmadi, M. K. S., Omar, K. B., and Noah, S. A: Back propagation algorithm: the best algorithm among the multi-layer perceptron algorithm, Int. J. Comput. Sci. Netw. Sec., 9, 378–383, 2009.
Antolik, M. S.: An overview of the National Weather Service's centralized statistical quantitative precipitation forecasts, J. Hydrol., 239, 306–337, https://doi.org/10.1016/S0022-1694(00)00361-9, 2000.
da Silva, A. G. and Silva, C. M. S.: Improving Regional Dynamic Downscaling with Multiple Linear Regression Model Using Components Principal Analysis: Precipitation over Amazon and Northeast Brazil, Adv. Meteorol., 2014, 928729, https://doi.org/10.1155/2014/928729, 2014.
Haykin, S. S.: Redes neurais, Bookman, Porto Alegre, 2001.
Leahy, K.: Multicollinearity: When the solution is the problem, in: Data mining cookbook: Modelling data for marketing, risk and costumer relationship management, edited by: Rud, O. P., John Wiley & Sons, New York, 106–108, 2001.
Download
Short summary
Statistical downscaling is widely used in large operational centers around the world, using exclusively linear relations (MLR); this study uses a statistical downscaling methodology using a nonlinear technique known as ANNs with CMIP5 project data. The artificial neural network can perform tasks that a linear program cannot. The main advantages of this are its temporal processing ability and its ability to incorporate several preceding predictor values as input without any additional effort.