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Abstract. Several studies have been devoted to dynamic and

statistical downscaling for analysis of both climate variabil-

ity and climate change. This paper introduces an application

of artificial neural networks (ANNs) and multiple linear re-

gression (MLR) by principal components to estimate rainfall

in South America. This method is proposed for downscal-

ing monthly precipitation time series over South America for

three regions: the Amazon; northeastern Brazil; and the La

Plata Basin, which is one of the regions of the planet that

will be most affected by the climate change projected for the

end of the 21st century. The downscaling models were de-

veloped and validated using CMIP5 model output and ob-

served monthly precipitation. We used general circulation

model (GCM) experiments for the 20th century (RCP his-

torical; 1970–1999) and two scenarios (RCP 2.6 and 8.5;

2070–2100). The model test results indicate that the ANNs

significantly outperform the MLR downscaling of monthly

precipitation variability.

1 Introduction

The forecasting of meteorological phenomena is a complex

task. The mathematical, statistical, and dynamic methods de-

veloped in recent decades help address the problem, but there

is still a need to investigate new techniques to improve the

results. One of these techniques is statistical downscaling,

which involves the reduction of the model’s spatial scale.

Downscaling techniques can be divided into two broad cate-

gories: dynamic and statistical. Dynamic techniques focus on

numerical models with more detailed resolution, while statis-

tical (or empirical) techniques use transfer functions between

scales. Currently, numerical weather prediction (NWP) mod-

els can forecast various meteorological variables with accept-

able accuracy (Ramírez et al., 2006).

Specifically, rainfall is of great interest, both for its cli-

matic and meteorological relevance and for its direct effect

on agricultural output, hydropower generation, and other im-

portant economic factors. However, it is one of the most

difficult variables to forecast, because of its inherent spatial

and temporal variability (Wilson and Vallée, 2002; Antolik,

2000). For this reason, the temporal and spatial scales in-

volved are not yet solved satisfactorily by the available nu-

merical models (Olson et al., 1995).

Ramos (2000), studying artificial neural networks (ANNs)

and multiple linear regression (MLR), found that the

neural-network method performed better than the linear-

regression method, although both showed good performance

for monthly and seasonal rainfall. Ramírez et al. (2005), us-

ing observed daily rainfall in the São Paulo region, found

that ANNs outperformed MLR, which showed a high bias

for days without rain. Ramírez et al. (2006) analyzed daily

rainfall in southeastern Brazil and concluded that the ANN

method tended to predict moderate rainfall with greater ac-

curacy during austral summer compared to ETA model fore-

casts. Mendes and Marengo (2010) reported that the daily

rainfall in the Amazon Basin is better represented by ANNs

than autocorrelation models.

In this context, the aim of this study is to conduct a sta-

tistical downscaling to estimate rainfall over South America

(SA), based on some models used in the fifth report of the
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Table 1. List of models from the CMIP5 data set used in this study.

Acronym Model Resolutions

ACCESS ACCESS1.0 1.3◦× 1.9◦

CCSM CCSM4 0.9◦× 1.3◦

CNRM CNRM-CM5 1.4◦× 1.4◦

CSIRO CSIRO-Mk3-6-0 1.9◦× 1.9◦

EC-EARTH EC-EARTH 1.1◦× 1.1◦

HadGEM-ES HadGEM2-ES 1.3◦× 1.9◦

INM INMCM4 1.5◦× 2.0◦

MPI MPI-ESM-LR 1.9◦× 1.9◦

MRI MRI-CGCM3 1.1◦× 1.1◦

NorESM NorESM1-M 1.9◦× 2.5◦

IPCC (Intergovernmental Panel on Climate Change), by ap-

plying artificial neural networks and multiple linear regres-

sion using principal components.

2 Data and methods

2.1 Data

We used monthly precipitation simulations for the austral

summer (December–January–February) and winter (June–

July–August) generated by 10 models (Table 1) from the

CMIP5 project (Coupled Model Intercomparison Project

5th Phase), obtained from the Earth System Grid Feder-

ation (ESGF) of the German Climate Computing Center

(http://ipcc-ar5.dkrz.de) and the Program for Climate Model

Diagnosis and Intercomparison (http://pcmdi3.llnl.gov). All

model simulations for the 20th century were compared with

the precipitation data of the CRU TS 3.0 (Mitchell and Jones,

2005), produced by the Climatic Research Unit (CRU) – Uni-

versity of East Anglia (UEA). These data cover the period

from 1901 to 2005 and have spatial resolution of 0.5◦×0.5◦.

We used climate simulations for the 20th century (historical)

in the 1970–1999 period and projections for the 21st century

(Representative Concentration Pathways – RCP 2.6 and 8.5)

for the period 2070–2099, as defined by Moss et al. (2010).

Our focus on South America is because it is one of the

planet’s regions that will be most affected by the climate

change projected for the end of the 21st century (Marengo

et al., 2010). According to Magrin et al. (2014), significant

trends in precipitation and temperature have been observed

in SA. In addition, changes in climate variability and in ex-

treme events have severely affected the region. The three sub-

regions evaluated in South America were defined according

to the precipitation regime: the Amazon (AMZ), northeastern

Brazil (NEB), and the La Plata Basin (LPB) (Fig. 1).

Figure 1. Illustration of the study areas of the defined regions.

2.2 Methods

2.2.1 Artificial neural networks

An ANN is a system inspired by the operation of biological

neurons with the purpose of learning a certain system. The

construction of an ANN is achieved by providing a stimu-

lus to the neuronal model, calculating the output, and adjust-

ing the weights until the desired output is achieved. An entry

is submitted to the ANN along with a desired target, a de-

fined response for the output (when this is the case, the train-

ing is regarded as supervised). An error field is built based

on the difference between the desired response and the out-

put of the system. The error information is used as feedback

for the system, which adjusts its parameters in a systematic

way; in other words, the backpropagation error algorithm is

used to train the network. According to Alsmadi et al. (2009)

the backpropagation architecture is the most popular, most

effective, and easiest-to-learn model for complex, multilay-

ered networks. This network is used more than all others

combined. This algorithm has a first phase with a functional

propagation signal (feedforward) and a second phase with the

backpropagation of the error (backpropagation).

In the first phase, the functional signal based on the inputs

propagates through the network until generating an output,

with the weights of synapses remaining fixed. In the second

phase, the output is compared with a target, producing an

error signal. The error signal propagates from the output to

the input, and the weights are adjusted in such a way as to

minimize the error. The process is repeated until the perfor-
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Figure 2. Structure of the artificial neural network.

Figure 3. Absolute error as a function of the number of iterations; AMZ (green), NEB (red), and LPB (black). Continuous lines represent

the summer period for each region, and the dashed lines represent winter.

mance is acceptable. As such, the performance of the ANN

is strongly dependent on the data source.

The first part of the data is used for training, the second is

used for cross-validation, and the third part is used for test-

ing. The architecture of the ANN used in the present study

can be found in Fig. 2. It consists of an input, a hidden layer,

and an output layer. The number of intermediate units was

obtained through trial and error. During the training, the per-

www.nonlin-processes-geophys.net/23/13/2016/ Nonlin. Processes Geophys., 23, 13–20, 2016
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Figure 4. Residuals×fitted values and theoretical quantiles, for the summer. (a) AMZ, (b) NEB, and (c) LPB.

formance of the ANN is also assessed within the validation

set.

The structure of the ANN used here involves training of

11 predictors (10 outputs of the models plus the observation

data) as input to the network, and the best network perfor-

mance is selected. We therefore expect that the ANN will

be able to provide more reliable values (through the error

analysis between the simulated values) than when using only

climate models.

2.2.2 Multiple linear regression using principal

components

MLR is a statistical technique that consists of finding a lin-

ear relationship between a dependent (observed) variable and

more than one independent variable (outputs of the general

circulation models (GCMs)). A multiple regression model

can be represented by the following equation:

Yi = a+ b1X1+ b2X2+ ·· ·+ bmXm+C, (1)

Nonlin. Processes Geophys., 23, 13–20, 2016 www.nonlin-processes-geophys.net/23/13/2016/
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Table 2. Proportion and cumulative proportion of variance for the indicated regions. Left column for summer, and right column for winter.

Summer Winter

AMZ AMZ

Proportion PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

of variance 0.24 0.12 0.13 0.11 0.09 0.08 0.11 0.06 0.06 0.04 0.71 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.01

Cumulative 0.24 0.36 0.49 0.60 0.69 0.77 0.84 0.90 0.96 1.00 0.71 0.78 0.83 0.87 0.90 0.93 0.95 0.97 0.99 1.00

proportion

NEB NEB

Proportion PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

of variance 0.32 0.13 0.10 0.09 0.08 0.08 0.06 0.07 0.04 0.03 0.54 0.10 0.08 0.07 0.06 0.04 0.04 0.03 0.02 0.02

Cumulative 0.32 0.45 0.55 0.64 0.72 0.80 0.86 0.93 0.97 1.00 0.54 0.64 0.72 0.79 0.85 0.89 0.93 0.96 0.98 1.00

proportion

LPB LPB

Proportion PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

of variance 0.16 0.15 0.14 0.10 0.11 0.09 0.07 0.06 0.06 0.06 0.16 0.15 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.06

Cumulative 0.16 0.31 0.45 0.55 0.66 0.75 0.82 0.88 0.94 1.00 0.16 0.31 0.43 0.54 0.64 0.73 0.81 0.88 0.94 1.00

proportion

where Yi is the dependent variable; X1, X2, . . ., Xm are the

independent variables; a is the intercept; b1, b2, and bm are

the multiple regression coefficients, to be estimated by the

least-squares method (Wilks, 1995); and C is the error term.

In spite of their obvious success in many applications,

MLRs present multicollinearity when employed with cli-

matic variables. In this regard, the parameter estimation er-

rors can be incorrectly interpreted (Leahy, 2000). To re-

solve this problem, we used principal components (PCs).

This method seeks to reduce the number of variables through

orthogonal transformations and to remove the multicollinear-

ity of the independent variables. The PCs of the explanatory

variables are therefore a new set of variables with the same

information as the original variables, but uncorrelated.

MLR is commonly used in various research areas and is

widely accepted by the scientific community. The ANNs are

still being inserted in science, especially when it comes to

climate studies. Our intention is to show advantages of using

ANNs for the weather. The advantages of the ANNs stand

out: the nonlinearity inherent networks that allow this tech-

nique can perform functions that a linear program (such as

MLR) can not. In addition, a neural network can be designed

to provide information not only about which particular pat-

tern, but also on the confidence in the decision.

3 Results and discussion

3.1 Validation of the ANNs

After using the precipitation simulations for the period 1970–

1999 with the ANNs, we obtained a final error after a number

of interactions, which ranged from 1 to 600 (Fig. 3). One of

the difficulties of using ANNs involves identifying the best

stopping point for training (Haykin, 2001), because the train-

ing error starts out with a maximum value, decreases rapidly,

and then levels off, indicating there is no more error to cor-

rect. In the summer, the network became stable more rapidly,

indicating that the GCMs employed converge to the same

pattern of precipitation.

With respect to winter, the networks remained unstable for

a longer time before finding the minimum error. The NEB re-

gion should be highlighted, which required the largest num-

ber of iterations, around 600. This is possibly related to the

greater variability of rainfall in this season (Fig. 3).

According to Villanueva (2011), it is assumed that the

three sets (training, validation, and testing) contain indepen-

dent samples and that they are well capable of representing

the problem being addressed. One should therefore expect

that good performance of the validation set will imply good

performance of the testing set. In this study, the validation

values were closest to the test values in summer.

3.2 Validation of the MLR by PCs

To validate the MLR, the following assumptions need to be

met: (i) the residuals must have random distribution around

mean zero (homoscedasticity); (ii) the residuals should have

a normal distribution; and (iii) variance must be homoge-

neous (da Silva and Silva, 2014).

Figures 4 and 5 show that the residuals versus adjusted val-

ues meet the assumption of homoscedasticity. With respect to

the Q–Q plot, the quantiles of the residuals versus the nor-

mal distribution indicate that all regions present normality in

the residuals. Given that, the closer the residuals are to the

line, the closer they are to having normal distribution. The

employed data therefore fit the MLR by the PC model. Based

on the PC analysis (Table 2), one can see that in summer for

the AMZ region the accumulated proportion explains around

77 % in NEB and 80 % in PC6, while in winter the PC1 of

the AMZ explained 71 % and PC3 explained 72 % in NEB,

thus representing the greatest variability of precipitation in

these regions. In general, one can observe that a smaller num-

ber of climate models were required in winter to capture the

www.nonlin-processes-geophys.net/23/13/2016/ Nonlin. Processes Geophys., 23, 13–20, 2016



18 T. Soares dos Santos et al.: ANNs and MLR to estimate rainfall over South America

 
 

B) 

(a)

(b)

(c)

Figure 5. The same as in Fig. 4 but for winter.

variance of precipitation in these regions. Similar behavior

of PCs in both seasons stands out in the LPB region, which

may be due to the failure of GCMs to capture the variance of

precipitation in this region.

Tables 3 and 4 show the Pearson’s correlation coefficients

at significance level of 5 % between the ANNs and the ob-

served data, and between the MLR by PCs and observed data,

respectively. One can see that in both downscaling methods

used the highest correlations occur in winter in all regions

under study, indicating that the models are better able to rep-

resent the variability of precipitation during this season.

Ramírez et al. (2006) performed statistical downscaling

for the precipitation forecast for the southeast of Brazil, using

ANNs and MLR with the ETA model. The results suggested

that the precipitation forecasts using ANNs performed better

in winter than in summer, since the synoptic forcing is more

pronounced and the deep convective activity is less common.

One can also observe that in the regions NEB (ANN×Obs)

and LPB (MLR×Obs) the correlations of 38 and 20 %, re-

spectively, were not statistically significant. The lowest cor-

relation occurred in the LPB region. Seth et al. (2010) stated

that the mean of the set of models reveals weaker moisture

Nonlin. Processes Geophys., 23, 13–20, 2016 www.nonlin-processes-geophys.net/23/13/2016/
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Table 3. p value and Pearson’s correlation coefficient at the level of significance of 5 % between the ANNs and observed data from the CRU

in all regions under study.

p value Correlation coefficient

AMZ NEB LPB AMZ NEB LPB

Summer 1.60× 10−7∗ 0.08 0.01∗ 0.61 0.38 0.18

Winter 5.28× 10−10∗ 1.02× 10−10∗ 1.20× 10−6∗ 0.77 0.69 0.49

∗ Significance 5 %.

Table 4. p value and Pearson’s correlation coefficient at the level of significance of 5 % between the MLR by PCs and observed data from

the CRU in all regions under study.

p value Correlation coefficient

AMZ NEB LPB AMZ NEB LPB

Summer 1.35× 10−10∗ 2.69× 10−4∗ 0.06 0.52 0.27 0.20

Winter 1.44× 10−18∗ 9.56× 10−14∗ 0.00∗ 0.62 0.60 0.33

∗ Significance 5 %.

Table 5. Change in monthly precipitation in terms of an increase or decrease by the end of this century (2071–2100) in the scenarios RCP

8.5 and 2.6, in relation to the reference period 1971–1999 (observation), in millimeters per month and percentage.

RCP 8.5 RCP 2.6

ANN (mm %−1) MLR (mm %−1) ANN (mm %−1) MLR (mm %−1)

AMZ
Summer 20.0/14.1 23.1/16.5 18.8/13.3 22.4/15.8

Winter −9.3/−12.2 −9.9/−13.9 −0.5/−0.7 −3.1/−4.9

NEB
Summer 55.2/36.2 47.1/30.9 48.0/33.1 40.0/27.5

Winter −6.6/−42.7 −6.9/−44.5 −1.81/−9.41 −2.06/−10.7

LPB
Summer 7.26/5.63 5.7/4.42 5.56/4.4 4.01/3.15

Winter −2.79/−4.17 −3.67/−5.48 −3.09/−4.63 −3.09/−4.56

transport east of the Andes, which may be one of the factors

that induce underestimation of precipitation in this region.

3.3 Downscaling scenarios

Table 5 presents the results of the monthly precipitation sim-

ulation for the end of this century (2071–2100) based on the

10 GCMs described previously in the RCP scenarios 8.5 and

2.6, in relation to the reference period 1971–1999 (observa-

tion) for the two downscaling methods.

In both scenarios, and employing both ANNs and MLR,

an increase of precipitation in the summer and a decrease

in the winter can be observed. These results corroborate the

findings of Mendes and Marengo (2010), who used ANNs

and autocorrelation to study changes in monthly precipita-

tion for the Amazon Basin in scenarios A2, A1B, and B1,

derived from five models of the CMIP3, used in the IPCC

AR4. The authors found an increase in precipitation in the

summer months and a reduction in winter.

In the NEB region (Table 5), an increase of precipitation in

summer of around 30 % was observed. With respect to win-

ter, one can see a reduction of 40 % in the higher-forcing sce-

nario (RCP 8.5) and of 10 % (RCP2.6) in the lower-climate-

forcing scenario. The IPCC AR4 revealed CMIP5 precipi-

tation projections for the end of century (2081–2100) of in-

creased precipitation from October to March over the south-

ern part of southeastern Brazil and the La Plata Basin. From

April to September, the CMIP5 ensemble projects precipita-

tion increases over the La Plata Basin and northwestern SA

near the coast (Stocker et al., 2013). According to Magrin et

al. (2014) seasonal scales, rainfall reductions during winter

and spring in southern Amazonia may indicate a late onset

of the rainy season in those regions and a longer dry season.

The changes are more intense for the late 21st century and

for the RCP8.5 when compared to scenario RCP 2.6, as can

be seen in Table 5.

www.nonlin-processes-geophys.net/23/13/2016/ Nonlin. Processes Geophys., 23, 13–20, 2016
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4 Conclusions

This paper investigated the applicability of artificial neural

networks and multiple linear regression analysis by princi-

pal components, as temporal downscaling methods for the

generation of monthly precipitation over South America (for

current years and future scenarios). Both the ANN and MLR

methods provided good fit with the observed data. This in-

dicates that ANNs are a viable alternative for the modeling

of precipitation in time series. ANNs can be compared with

the statistical model, and this indicates that the networks are

a potentially competitive tool.

The future scenarios used (RCP 2.6, lower climate forcing,

and RCP 8.5, higher climate forcing) indicate an increase in

precipitation in summer and a reduction in precipitation dur-

ing winter according to both the methods used.

In general, the results showed that the use of ANNs pro-

duced more accurate results than MLR by PCs, which can be

attributed to the fact that ANNs perform tasks that a linear

program is unable to do. In addition, one of the advantages

of ANNs is their capacity for temporal processing and thus

their ability to incorporate not only concurrent but also sev-

eral predictive values as inputs without any additional effort.
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