Articles | Volume 22, issue 4
https://doi.org/10.5194/npg-22-485-2015
https://doi.org/10.5194/npg-22-485-2015
Research article
 | 
18 Aug 2015
Research article |  | 18 Aug 2015

Spectral diagonal ensemble Kalman filters

I. Kasanický, J. Mandel, and M. Vejmelka

Related authors

Hybrid Levenberg–Marquardt and weak-constraint ensemble Kalman smoother method
J. Mandel, E. Bergou, S. Gürol, S. Gratton, and I. Kasanický
Nonlin. Processes Geophys., 23, 59–73, https://doi.org/10.5194/npg-23-59-2016,https://doi.org/10.5194/npg-23-59-2016, 2016
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Anderson, B. D. O. and Moore, J. B.: Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001.
Beezley, J. D., Mandel, J., and Cobb, L.: Wavelet ensemble Kalman filters, in: Vol. 2, Proceedings of IEEE IDAACS'2011, 15–17 September 2011, Prague, 514–518, https://doi.org/10.1109/IDAACS.2011.6072819, 2011.
Berre, L.: Estimation of synoptic and mesoscale forecast error covariances in a limited-area model, Mon. Weather Rev., 128, 644–667, https://doi.org/10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2, 2000.
Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S., Chapnik, B., and Raynaud, L.: A variational assimilation ensemble and the spatial filtering of its error covariances: increase of sample size by local spatial averaging, http://old.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2007/Data_assimilation/Berre.pdf (last access 7 August 2015), 2007.
Download
Short summary
A new type of ensemble Kalman filter for data assimilation is developed, based on fast Fourier transform and wavelet transform. The method can work with minimal computational resources. We develop variants for several general types of observations, give a rigorous proof that the method improves the approximation of the state covariance, and present computational experiments showing that the new technique works reliably with very small ensembles and is stable over multiple analysis cycles.