Articles | Volume 21, issue 4
Nonlin. Processes Geophys., 21, 777–795, 2014
https://doi.org/10.5194/npg-21-777-2014

Special issue: Physics-driven data mining in climate change and weather...

Nonlin. Processes Geophys., 21, 777–795, 2014
https://doi.org/10.5194/npg-21-777-2014

Research article 28 Jul 2014

Research article | 28 Jul 2014

Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques

A. R. Ganguly et al.

Related authors

Non-parametric Bayesian mixture of sparse regressions with application towards feature selection for statistical downscaling
D. Das, J. Dy, J. Ross, Z. Obradovic, and A. R. Ganguly
Nonlin. Processes Geophys., 21, 1145–1157, https://doi.org/10.5194/npg-21-1145-2014,https://doi.org/10.5194/npg-21-1145-2014, 2014

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Identification of droughts and heatwaves in Germany with regional climate networks
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021,https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021,https://doi.org/10.5194/npg-28-213-2021, 2021
Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico
Jonathan M. Lilly and Paula Pérez-Brunius
Nonlin. Processes Geophys., 28, 181–212, https://doi.org/10.5194/npg-28-181-2021,https://doi.org/10.5194/npg-28-181-2021, 2021
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021,https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021,https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary

Cited articles

Alexander, L. and Perkins, S.: Debate heating up over changes in climate variability, Environ. Res. Lett., 8, 041001, https://doi.org/10.1088/1748-9326/8/4/041001, 2013.
Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., and Rabkin, A.: A view of cloud computing, Commun. ACM, 53, 50–58, https://doi.org/10.1145/1721654.1721672, 2010.
Bain, C. L., De Paz, J., Kramer, J., Magnusdottir, G., Smyth, P., Stern, H., and Wang, C.: Detecting the ITCZ in Instantaneous Satellite Data using Spatiotemporal Statistical Modeling: ITCZ Climatology in the East Pacific, J. Climate, 24, 216–230, https://doi.org/10.1175/2010JCLI3716.1, 2011.
Balakrishnan, S., Rinaldo, A., Singh, A., and Wasserman, L.: Tight Lower Bounds for Homology Inference, arXiv:1307.7666, 2013a.
Balakrishnan, S., Narayanan, S., Rinaldo, A., Singh, A., and Wasserman, L.: Cluster Trees on Manifold, in: Neural Information Processing Systems 2013, Lake Tahoe, Nevada, USA, 26 pp., 2013b.