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Abstract. Extreme events such as heat waves, cold spells,
floods, droughts, tropical cyclones, and tornadoes have po-
tentially devastating impacts on natural and engineered sys-
tems and human communities worldwide. Stakeholder deci-
sions about critical infrastructures, natural resources, emer-
gency preparedness and humanitarian aid typically need to
be made at local to regional scales over seasonal to decadal
planning horizons. However, credible climate change attri-
bution and reliable projections at more localized and shorter
time scales remain grand challenges. Long-standing gaps in-
clude inadequate understanding of processes such as cloud
physics and ocean–land–atmosphere interactions, limitations
of physics-based computer models, and the importance of in-
trinsic climate system variability at decadal horizons. Mean-
while, the growing size and complexity of climate data from
model simulations and remote sensors increases opportuni-
ties to address these scientific gaps. This perspectives arti-
cle explores the possibility that physically cognizant min-
ing of massive climate data may lead to significant advances
in generating credible predictive insights about climate ex-
tremes and in turn translating them to actionable metrics and
information for adaptation and policy. Specifically, we pro-
pose that data mining techniques geared towards extremes

can help tackle the grand challenges in the development of
interpretable climate projections, predictability, and uncer-
tainty assessments. To be successful, scalable methods will
need to handle what has been called “big data” to tease out
elusive but robust statistics of extremes and change from
what is ultimately small data. Physically based relationships
(where available) and conceptual understanding (where ap-
propriate) are needed to guide methods development and in-
terpretation of results. Such approaches may be especially
relevant in situations where computer models may not be
able to fully encapsulate current process understanding, yet
the wealth of data may offer additional insights. Large-scale
interdisciplinary team efforts, involving domain experts and
individual researchers who span disciplines, will be neces-
sary to address the challenge.

1 Introduction

Observed and projected changes in the frequency and sever-
ity of heat waves and heavy precipitation events have been
explicitly linked to human-induced climate change by the re-
cent literature, as summarized in the IPCC Special Report on
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Managing the Risk of Extreme Events and Disasters to Ad-
vance Climate Change Adaptation, also known as the IPCC-
SREX (Field et al., 2012) and in a perspective article in Na-
ture Climate Change (Coumou and Rahmstorf, 2012). How-
ever, the impact of the changing climate on other types of
extremes such as severe weather and hydrological events, in-
cluding floods, droughts, storms, hurricanes, cyclones, and
tornadoes, remains unclear. Mitigation policy requires quan-
tifying the benefits of reducing emissions in terms of impacts
avoided. Adaptation to natural hazards and constrained natu-
ral resources requires credible projections of extremes, along
with their uncertainties, at local to regional scales. Delineat-
ing possible links between changes in weather extremes with
changes in climate or land use are therefore directly relevant
to both mitigation and adaptation planning.

High-resolution global climate models (GCMs), in con-
junction with downscaling based on statistical or dynamical
approaches, may bridge the gap. Unfortunately, the recent
literature and our analyses suggest that physics-based mod-
eling alone may not be able to keep pace with the urgency of
stakeholder requirements. Each generation of climate models
brings new advances, such as the recent expansion of more
traditional atmosphere–ocean general circulation models into
fully coupled earth system modeling systems in the Coupled
Model Intercomparison Project version 5 (CMIP; Taylor et
al., 2012). Coupling new models brings its own issues, how-
ever, and evaluation studies suggest that, despite noticeable
improvements, regional-scale biases persist in the latest gen-
eration of climate models, despite enhanced resolutions and
the incorporation of additional physical and biogeochemical
processes (e.g. Ryu and Hayhoe, 2014; Kumar et al. 2014).

Climate extremes continue to represent a major challenge.
Consider the example of droughts: according to the IPCC-
AR5 (IPCC 2013) report on the “physical science basis” of
climate change, scientific confidence in the ability to charac-
terize and project droughts may have reduced over the last
several years (see also Table SPM.1 in the IPCC-AR5 sum-
mary for policymakers). Two recent papers on droughts, one
published in Nature Climate Change (Dai, 2013) and another
in Nature (Sheffield et al., 2012), offered diametrically op-
posite insights. While Dai (2013) concluded that droughts
globally have shown an increasing trend in the past and will
worsen in the future; Sheffield et al. (2012) found a lack of
trends in global drought over the past 60 years. The differ-
ing insights are summarized by Trenberth et al. (2014) in a
perspectives article in Nature Climate Change.

Similar opposing insights have been reported for temper-
ature extremes, which are generally relatively better simu-
lated by climate models. Hansen et al. (2012) reported that
seasonal temperature anomalies have significantly increased
while Huntingford et al. (2013) reported significantly more
uncertainty and did not find an increasing trend. Apparent
insights can depend on metrics of choice and data analysis
procedures (Alexander and Perkins, 2013; Huntingford et al.,

2013), adding complexity to the analytic process and inter-
pretation of findings.

Climate-related data are rapidly increasing in size and
complexity (Taylor et al., 2012). This begs the question
whether data science, which has already transformed dis-
parate data-rich fields from biological sciences to social me-
dia to information retrieval, may also offer fresh insights to
address fundamental knowledge-gaps related to climate ex-
tremes. Going back to the droughts example, Trenberth et
al. (2014) suggest that the reasons for the diverging insights
were the different choices of underlying data and metrics.

While confidence in scientific understanding and attribu-
tion of observed trends to human-induced climate change
continues to increase, the IPCC-SREX highlights key gaps
in present scientific understanding of climate extremes. Pre-
vious and current research on climate extremes typically fo-
cuses on one of three areas: the physical science basis, statis-
tics of extremes, or adaptation and potential impacts. Phys-
ical science-based analyses tend to emphasize mechanistic
understanding and attribution; statistical analyses generally
develop data-driven techniques for descriptive and predictive
analyses (for example, recent applications of extreme value
theory, change detection and sparse regression to climate ex-
tremes); and impact studies tend to focus on exposure, vul-
nerability and consequence assessments. Despite significant
progress in all three areas, our ability to establish credible
links between climate variability, climate change, and cli-
mate extremes is still insufficient to facilitate confident and
risk-informed decision-making, particularly at regional and
decadal scales.

Reliable projections need to generate interpretable predic-
tive insights while accounting for the knowledge-gaps and
intrinsic system variability. The wealth of data continues
to increase, as does our conceptual understanding of pro-
cesses that may generate extremes, such as the influence of
oceans and climate oscillators, and local or regional terres-
trial drivers. The lack of significant improvement in the lat-
est generation of computer models may suggest that the en-
hanced understanding may not yet translate to improved pro-
jections. Data-driven methods by themselves may not be ade-
quate for long-lead time projections of a nonlinear dynamical
system such as climate. Data assimilation methods have lim-
ited ability to contribute in the future when projection lead
times are large. However, dependence characterization and
data-driven predictive modeling may be conditioned on the
results of physics-based models, and further based on phys-
ical or process understanding, that in turn may be difficult
to capture within the current set of model parameterizations.
In such cases, pure data-driven methods may lead to spurious
correlations or predictions, but physical constraints in the de-
sign and interpretation of such methods may guard against
the possibility. For example, ocean or atmospheric tempera-
tures from climate models may generate better characteriza-
tions and projections of precipitation extremes statistics with
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uncertainties (e.g., Kao and Ganguly 2011; Steinhaeuser et
al., 2012).

2 The climate science question: interdisciplinary
perspectives

This article focuses on what may be viewed as three inter-
related grand challenges in climate change studies: (1) char-
acterization of climate extremes, (2) comprehensive assess-
ment of uncertainties, and (3) enhanced predictive under-
standing, with a goal of improving projections. Climate and
earth sciences have grown from data-poor to data-rich sci-
ences over the last couple of decades, and are likely to be at
the forefront of societal challenges pertaining to big data in
this century (Overpeck et al., 2011). Can the rapid and recent
increases in computational power and analysis capabilities,
as well as steady progress on foundational theories in statis-
tics, nonlinear physics, information theory, signal processing,
computer science, and econometrics, enable fundamental ad-
vances in climate science through computational data sci-
ences? Can the data science methods be carefully designed
to avoid spurious generalizations, and to extract physically
based patterns that can be interpreted by climate scientists?

Solutions for massive data volume and complexity have
already made their mark in scientific and engineering disci-
plines as diverse as biology, astrophysics, and Internet phe-
nomena such as Google or Facebook (Berriman et al., 2010;
Langmead et al., 2010; Yang et al., 2011) and spawned new
fields of research such as sensor networks (Ganguly et al.,
2009a). Climate problems increasingly demand data-driven
solutions, but the relevant approaches need to consider rela-
tively unique challenges not present, or not as predominant,
in fields where data sciences have proved enormously suc-
cessful thus far. Thus, carefully designed parallel and dis-
tributed algorithms may be required to ensure that sophis-
ticated methods designed for nonlinear processes and com-
plex long-memory or long-range associations can scale and
remain resilient to spurious “discoveries”.

3 Big data challenges in climate science

Over the last few decades, climate data has expanded rapidly
in both size and complexity. While weather station records
remain small and relatively manageable, the advent of the
satellite era and remote sensors in general, and the evolu-
tion of high-resolution weather and climate models, both of
which divide the planet up into ever-decreasing grid sizes,
are the primary factors driving data increases. Ensembles of
archived climate model outputs have grown from a few hun-
dred terabytes after the last IPCC assessment cycle (AR4)
to the petabyte scale (AR5). The global archive of climate
data is projected to grow to about 50 PB around 2015, ex-
ceed 100 PB by 2020 and reach up to 350 PB by 2030, mainly
from model simulations and remote sensing observations, but

also from in situ observations (Overpeck et al., 2011; Taylor
et al., 2012). The pace of data growth appears to suggest that
even these projections may represent lower bounds.

Disk space and processing speeds are perennial chal-
lenges. Today, however, the major technical barriers for min-
ing massive data lie in scalable data-intensive analysis ca-
pabilities, where fast storage and scalable input/output are
major concerns (Schadt et al., 2010; Trelles et al., 2011),
as well as mathematical and algorithmic capabilities. Data-
driven methods are not new in climate, meteorology or geo-
physics; the novelty is in the scalability challenges for mas-
sive data as well as the opportunities to infer novel process
understanding and new predictive insights.

Recent developments in data science have sometimes fo-
cused almost exclusively on scalability to massive data rather
than data complexity (Armbrust et al., 2010; Dean and Ghe-
mawat, 2008). New methods need to consider several cru-
cial aspects that are rather unique to climate science and re-
lated disciplines: climate data exhibit complex space–time
dependence; the data-generation processes are highly non-
linear and may be extremely sensitive to initial conditions;
variability may occur over long time frames and thus may be
difficult to evaluate with limited historical data; spatial de-
pendencies may be based on proximity as well as long range
teleconnections with time lags or leads, which makes the
discovery of associations a combinatorial challenge; and ex-
tremes, unusual patterns or anomalies are of interest, partic-
ularly at higher resolutions. The dominance of nonlinear and
non-stationary processes, combined with the need for projec-
tions (e.g., for extreme values) over long-lead time precludes
data-driven projections alone.

Predictability studies (e.g., Karamperidou et al., 2013)
leading to characterization of irreducible uncertainties is a
major challenge in climate science that may be relatively
unique among the urgent big-data challenge areas. Sterk et
al. (2012) measured predictability of extremes with relatively
simple geophysical models using a finite-time Lyapunov ex-
ponent. Delsole and Tippett (2009a, b) proposed a measure
based on average predictability considering all lead times
without time averaging. Koster and Suarez (2000) studied
predictability of precipitation in the context of climate vari-
ability. Branstator and Teng (2010, 2012) studied decadal-
scale predictability from an ensemble of multiple initial con-
dition runs using relative entropy. Giannakis and Majda et
al. (2012) have used data driven methods for dynamical sys-
tems (with applications in climate atmosphere ocean sci-
ence) to quantify predictability and extract spatiotemporal
patterns. The approaches are relatively new to climate but
have tremendous implications for stakeholders and decision
makers. The implications of adapting these methods to big
data have not been studied in detail.

Big data has its own unique problems. A major challenge
related to working with large data sets is avoiding false pos-
itives, especially when looking for patterns in the data that
are rare. The problem arises from the fact that when a large
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amount of data is considered, the probability of encounter-
ing random occurrence of the target pattern in the data is also
high. From the viewpoint of statistical tests, thep value has
little relevance for a sample size big enough to be called re-
ally big data. Thus, virtually any null hypothesis will be re-
jected if the sample size is large enough, since thep value
of the null hypothesis will always be almost zero. Bonfer-
roni correction, a theorem of statistics that gives a statisti-
cally naive way to avoid these false positive responses to a
search through the data, has been used widely in the past with
large data sets. However, avoiding false discoveries is still an
active research area and several new methods have been pro-
posed in last two decades (Benjamini and Hochberg, 1995;
Bogdan et al., 2008; Dudoit et al., 2003; Efron, 2007) that
improve upon the Bonferroni theorem both by new method-
ological and theoretical developments. Another problem with
big data arises if one tries to identify the distribution a vari-
able follows based solely onp values. The goodness-of-fit
tests become extremely sensitive to small, inconsequential
changes when the sample size is large. The issue of false
positives with big data has been discussed in the context of
a commonly used statistical approach for climate extremes.
Resampling techniques have been used to study properties
of climate extremes (e.g., Kharin et al., 2005; 2007), where
the authors also list caveats and challenges for such usage.
A recent proposal for bootstrap in big data (Kleiner et al.,
2014) and other alternatives require further study, in order
to understand how to use resampling for extremes of climate
variables from large data sets.

Due to this ever-present risk of coming up with spuri-
ous discoveries and insights with big data, the importance
of physics-guided data mining needs to be emphasized fur-
ther. We can either use physical constraints to validate the
data-driven knowledge discoveries or incorporate the physi-
cal constraints in the knowledge discovery process by map-
ping them either as statistical constraints or in the selection
of variables and distributions.

4 Societal urgency and state of the science

The types of extreme events discussed here have the po-
tential to cause significant devastation; as shown in Fig. 1,
(a) the most significant economic loss results from hurri-
canes/cyclones and floods, and (b) the largest number of
deaths from droughts, tropical cyclones and floods. Mortal-
ity and economic losses from tornadoes and severe thunder-
storms has been of significant concern in the United States,
given the devastating losses in 2011 (Simmons et al., 2012).
The size depicting each type of hazard provides a measure
of our uncertainty under climate change; unfortunately, we
find that the level of uncertainty is generally high for the
most destructive hazards (Bouwer, 2011). Even for the rel-
atively better understood temperature extremes, such as heat
waves and cold snaps, large uncertainties remain, especially

Figure 1. Frequency and severity of hydrometeorological hazards,
indicated as damages in US dollars(a) and annual fatalities(b),
along with their uncertainties in our current understanding in a
climate change context. Damage and fatality data are taken from
the UN Office for Disaster Risk Reduction (UNISDR) at Preven-
tionWeb (http://www.preventionweb.net/english/hazards/) averaged
over 1980–2008. The uncertainties are represented by the size of the
bubbles with larger circles indicative of greater uncertainty and are
derived from the IPCC confidence and likelihood estimates (Field
et al., 2012).

at regional scales (Ganguly et al., 2009b). Recent studies
(Fischer et al., 2013; Fischer and Knutti, 2014) suggest that
these large uncertainties will likely persist even if climate
models improve rapidly (Maslin and Austin, 2012; Kumar et
al., 2014). Hazards are expected to be more severe for poorer
and more vulnerable regions; developed economies, how-
ever, are not immune to loss either, as demonstrated by Paris
and Chicago heat-wave mortality (Hayhoe et al., 2010) and
United States Gulf Coast hurricane impacts (Burby, 2006).
Recent studies have advanced our understanding of observed
trends in heavy precipitation or flooding and attributions to
global warming (Min et al., 2011; Pall et al., 2011). How-
ever, uncertainties remain in interpreting observed extremes
(Ghosh et al., 2011; Goswami et al., 2006) and in reliable
projections of extremes’ intensity-duration-frequency at re-
gional scales (Kao and Ganguly, 2011; Kharin et al., 2007)
that are crucial for water and flood management. Floods in
particular are less well understood owing to cascading un-
certainty from projections of heavy rainfall to consequences
for surface hydrology and impacts on water management
(Schneider and Kuntz-Duriseti, 2002). Nevertheless, gener-
ating credible projections of climate variables at regional or

Nonlin. Processes Geophys., 21, 777–795, 2014 www.nonlin-processes-geophys.net/21/777/2014/

http://www.preventionweb.net/english/hazards/


A. R. Ganguly et al.: Toward enhanced understanding and projections of climate extremes 781

Figure 2. GCMs are designed to simulate the large-scale circulation of the atmosphere and its response to external forcing, and need to
be evaluated from that perspective. However, adaptation, impacts and vulnerability (IAV) studies occasionally use GCM model simulations
directly or after statistical and dynamical downscaling. Model-based assessments in the future need to ultimately rely on GCM projections.
Nevertheless, relatively naïve utilization of GCM projections for IAV studies may yield non-informative or even misleading conclusions.
This is illustrated though comparisons between the CMIP3 and CMIP5 climate model simulations at continental and global scales in terms
of average temperature and precipitation. The two GCM-ensembles are evaluated against the observation-based National Centers for Envi-
ronmental Prediction/National Center for Atmospheric Research (NCEP/NCAR, NCEP-1) and National Centers for Environmental Predic-
tion/Department of Energy (NCEP/DOE, NCEP-1) reanalysis data. For precipitation, the Global Precipitation Climatology Project (GPCP)
observational data is used in addition. Aggregate comparisons do not appear to suggest significant improvements of CMIP5 over CMIP3.
While this does not necessarily imply a lack of improvement in CMIP5 over CMIP3 in terms of large-scale dynamics, this does suggest the
need for caution when GCMs (with or without downscaling) need to be used for IAV studies.

even local scales remains an important step for reliable as-
sessments of hazards and their consequences.

Can improvements in physics and higher-resolution mod-
els increase otherwise inadequate precision and enhance the
accuracy of projections for climate-related extremes? Pro-
jections from global models tend to grow more uncertain
with increased spatial and temporal resolution, especially
for precipitation, particularly so over the tropics (Kao and
Ganguly, 2011). The possibility that the current-generation
and higher resolution CMIP5 models will improve projec-
tions compared to the previous-generation phase 3 (CMIP3)
models remains to be tested at appropriate scales.

While comparing the performance of GCMs it is impor-
tant to carefully distinguish between model evaluation ver-
sus translating model outputs into information relevant for
impacts, adaptation, and vulnerability (IAV) studies. GCMs
are designed to model large-scale atmospheric dynamics, and
from that perspective, recent results suggest general improve-
ment of the ensemble of CMIP5 models compared to CMIP3
(e.g., Ryu and Hayhoe, 2014). However, any improvement
in the internal physics or dynamical behavior of models may

not be immediately manifested in, for example, model abil-
ity to reproduce absolute values of temperature or precipi-
tation at regional and seasonal scales, or in their extremes.
Nonetheless, IAV studies may occasionally rely on GCM
simulations of temperature and precipitation for future as-
sessments, either directly or indirectly after statistical or dy-
namical downscaling. One of the primary functions of down-
scaling, particularly statistical, is to remove GCM-simulated
biases in absolute values for IAV applications that require ab-
solute values to assess impacts. The importance of this step
is illustrated in Fig. 2, which compares a 7-member CMIP5
versus CMIP3 ensemble with National Center for Environ-
mental Prediction (NCEP-I and NCEP-II) reanalysis temper-
ature and Global Precipitation Climatology Project (GPCP)
precipitation. Based on a straightforward comparison, no im-
provements are apparent either in terms of the multimodel
median projections or in terms of the uncertainty bounds as
expressed by the range of the multimodel ensemble. In fact,
CMIP5 almost consistently predicts higher temperatures and
precipitation compared to the CMIP3 multi-model median,
but these higher values do not necessarily agree better with
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the observations. These preliminary results (further details
in Kumar et al., 2014) may appear to provide further sup-
port to arguments (Hulme et al., 2009) that model improve-
ments alone may not provide immediate answers to stake-
holder questions or adaptation needs and additional analy-
ses are clearly required in order to extract information from
GCM simulations directly relevant to and able to be used by
IAV assessments.

This is precisely where big data solutions (and in the case
of extremes, big data solutions that are ultimately geared to-
wards rare event and small data, or elusive indicators thereof)
may provide value. Improvements in internal physics and
large-scale dynamics of GCMs may not directly improve the
variables of most immediate interest to IAV studies. How-
ever, data-driven methods may still be able to leverage the
improvements in the larger-scale or internal model variables
and yield improved projections for the variables of interest
to IAV. For the data-driven projections to be interpretable
and useful, they need to be guided by physical understand-
ing, where the latter physics may not be directly captured by
GCMs, perhaps even after downscaling.

5 Characterization of climate extremes

Climate extremes often refer to well-defined weather or cli-
mate events that are quantified using measurable physical
quantities such as temperature, precipitation, or wind speed
and that are rare (i.e., occurring at the tails of the distribu-
tion) relative to current climate states (Zwiers et al., 2013).
The definition of climate extremes, in general, varies with
the nature of the phenomena and may be based on their
impacts. Extremes such as hurricanes, tornadoes and floods
cause immediate and widespread devastation, while droughts
tend to unfold slowly, are spatially extensive, non-structural
and have longer-lasting impacts. While phenomena like heat
waves under climate change are better understood than most
other climate-related extremes (Coumou and Rahmstorf,
2012; Field et al., 2012), their very definitions may depend
on the impact sector of interest (Ebi and Meehl, 2007). Quan-
titative research relating climate extremes and anomalies to
impacts, for example terrestrial ecology (Reichstein et al.,
2013; Zscheischler et al., 2013, 2014) and agricultural pro-
duction (Lobell et al., 2006, 2012), often examine climate
indices derived from extremes with disciplinary specificity.
Figure 3a shows that different definitions of hot extremes can
significantly impact the final insights; however each defini-
tion remains useful for its specific context, such as energy
demand (Christenson et al., 2006) or public health (Kovats
and Kristie, 2006).

As model-simulated and observational databases, and the
importance of informing adaptation or mitigation policy,
continue to grow, descriptive analysis of multiple definitions
of model-projected and observed extremes will at once be-
come a larger and more complex task. Surprising insights

about cold temperature extremes (Kaspi and Schneider,
2011; Kodra et al., 2011) are still being discovered from
observed and model-simulated data. Thus, while decreasing
frequency of cold extremes has been reported (Coumou and
Rahmstorf, 2012), there is still a need for better characteriza-
tion and improved mechanistic understanding of their poten-
tial persistence in a warming world.

Recent advances in attribution of heavy rainfall do not di-
rectly translate to improved information for adaptation (Min
et al., 2011; Pall et al., 2011). Thus, intensification of precip-
itation extremes under warming, which is partially explained
through our conceptual process understanding (O’Gorman
and Schneider, 2009; Sugiyama et al., 2010), is projected
relatively credibly in the extra-tropics and at continental to
global average scales (Kao and Ganguly, 2011; Kharin et
al., 2007). However, large uncertainties remain in estimat-
ing the precise degree of change and for specific regions
such as the tropics (Kharin et al., 2007), where diverging in-
sights (Ghosh et al., 2011; Goswami et al., 2006) have been
recently reported owing to differing characterizations of ex-
tremes. Extreme value theory (EVT) has been used in hy-
drology (Towler et al., 2010) and climate (Ghosh et al., 2011;
Kao and Ganguly, 2011; Kharin et al., 2007; Min et al., 2011)
to characterize rainfall extremes. Moreover, hydrological ex-
tremes are described by several mutually correlated charac-
teristics; such as peak flow, volume and duration (Zhang and
Singh, 2007) for floods and severity, duration, intensity and
spatial extent for droughts (Reddy and Ganguli, 2013; Song
and Singh, 2010).

Univariate frequency analyses cannot provide accurate as-
sessment of the probability of occurrence of extremes if the
underlying event is characterized by mutually correlated ran-
dom variables and may lead to over or under estimation of
associated risk (Chebana and Ouarda, 2011). Hence, multi-
variate statistical approaches are often necessary in order to
completely assess risk of hydrological extremes. Further de-
velopments in the statistical theories related to multivariate
extremes are needed for advancing our ability to quantify
the complex dependencies of climate extremes more com-
pletely, and with greater certainty (Kuhn et al., 2012; Marty
and Blanchet, 2011; Mastrandrea et al., 2011; Turkman et al.,
2009; Wadsworth and Tawn, 2012). Descriptions of rainfall
extremes, whether based on EVT or fixed/dynamic thresh-
olds, need to characterize changing statistics of storm events
(Kao and Ganguly, 2011), droughts (van Huijgevoort et al.,
2012) and be relevant to multiple sectors, including hydraulic
infrastructure design, flood and drought management policy.
A recent study of probable maximum precipitation (PMP)
and climate change (Kunkel et al., 2013) may offer new ways
to blend physics and data-driven insights for precipitation
extremes.

Can data-driven methods provide new insights for un-
derstanding and characterizing these extremes? Figure 3b–
c presents fully automated and computationally efficient
spatio-temporal characterization of long-term droughts using
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Figure 3. Characterization of extremes from big climate data.(a) Characterization of extremes requires a summarization of the statisti-
cal properties of climate-related observations and model-simulations. A thorough assessment of extremes from massive climate data may
be especially challenging because the definitions of extremes definitions and indices may depend on stakeholder needs. Here we present
three different choices: an energy-consumption related metric called cooling degree days or CDD (left panels); a heat-wave intensity in-
dex (Ganguly et al., 2009b) thought to be relevant for human mortality defined as consecutive nighttime minima events (middle panels);
an index grounded in the statistical theory of extreme values (Kharin et al., 2007). The substantial regional differences suggest the dif-
ferences in the nature of the insights.(b) Novel data-driven approaches can help detect climate-related extremes, particularly ones like
droughts that are especially difficult to characterize. Our analysis (bottom left panel) suggests that Markov-random-field (MRF) based
approaches may improve the detection process but traditional implementations may not scale to large data. We have developed a new,
computationally efficient optimization solver to implement the MRF (Fu et al., 2012). As a proof of concept, here we show how the
new method detects persistent and significant droughts over space and time.(c) We used three popular methods to solve the same MRF
inference. Our algorithm for characterizing droughts, “KL-ADM”, is approximately one order of magnitude faster than an existing popu-
lar routine called “Proximal” (dark red) and much faster than any commercially available software (e.g., IBM ILOG CPLEX Optimizer,
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/). The first (second) data set (x axis) is a simulated data set with
100 000 (200 000) variables and 293 500 (586 000) two-way relationships among them, where each variable can take on 3 (4) possible values.
The third data set is the Climate Research Unit precipitation data set, which has more than 7 million variables (i.e., points in space) and each
can take on two possible values (drought or no drought). This example clearly shows a significant speedup in computation using KL-ADM,
especially with four parallel processors.

a Markov random field (MRF)-based approach (Fu et al.,
2012); this type of MRF approach has been validated by
automatically detecting the intertropical convergence zone
from instantaneous satellite data (Bain et al., 2011). The al-
gorithm was able to detect some of the major global droughts

and proved to be efficient in detecting droughts as com-
pared to fixed percentile-based approaches. The method has
been applied to detect all persistent droughts over the past
century (1901–2006). Negative precipitation anomalies of
at least 5 years are considered as significant (hydrologic)
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droughts and shown here for data from 1970 to 1998. The
Sahel drought is clearly detected, as are several others. While
this analysis uses a single variable, specifically Climatic Re-
search Unit (CRU) precipitation observations, the method
is capable of handling multiple variables that contribute to
the characterization of droughts, such as precipitation, soil
moisture, and geopotential height. In fact, this MRF-based
approach, once generalized to multiple variables, may be
viewed as a methodological improvement to the wavelet-
based method (Narisma et al., 2007) for abrupt drought de-
tection in the literature. One of the advantages is the abil-
ity to fully automate the drought detection procedure with
a lesser number of predefined parameters, which may be
useful for the detection of megadroughts from paleoclimate
data or plausible megadroughts from model projections. The
value addition of the MRF-based approach, beyond proof
of concept detection of known droughts, would be demon-
strated when the methods are generalized for multiple vari-
ables, and subsequently used for the evaluation of histor-
ical multi-model ensembles as well as for the generation
of future projections with uncertainty from model projec-
tions in forecast mode. Computationally scalable and flexi-
ble detection approaches based on spatio–temporal similar-
ity between drought events (Lloyd-Hughes, 2012) have also
recently been developed. On a completely different scale,
our recent research (Ganguli and Ganguly, 2013) explores
severity–duration frequency curves for observed meteorolog-
ical droughts over the continental US during the last few
decades through copula-based approaches.

6 Computational challenges in downscaling

As long as the spatiotemporal scales relevant to stakehold-
ers and policymakers are inadequately resolved by GCMs,
downscaling will continue to remain highly relevant to im-
pact analyses. Driven by GCMs outputs, downscaling inher-
its many of their problems and generates (often massive vol-
umes of) additional data, thus amplifying the big data chal-
lenge in terms of both data size and complexity. Statistical
downscaling (Bürger et al., 2012; Mannshardt-Shamseldin
et al., 2010; Robertson et al., 2004) model outputs are rela-
tively computationally inexpensive to generate, but criticisms
(Eden et al., 2012; Schmith, 2008) have focused on model
complexity and the lack of clarity on whether statistical mod-
els will perform well far into the future or on disparate re-
gions. Dynamical downscaling (Pierce et al., 2012; Trapp et
al., 2010), based on regional climate models, is much more
resource intensive and is not independent of stationarity as-
sumptions in sub-grid scale parameterizations, either. The
primary advantages over statistical downscaling are explicit
incorporation of topography and higher-resolution process
models, which are critical given the possible importance of
finer-scale processes (Jung et al., 2012; Diffenbaugh et al.,
2005). However, regional climate models parameterize such

processes, often leading to significant inter-model disagree-
ment, e.g., on precipitation (Palmer et al., 2004).

Figure 4 illustrates the ability of both statistical (Ghosh,
2010) and dynamical (Heikkilä et al., 2010) downscaling
to provide precise insights compared to the original global
model results. Dynamical downscaling over the island nation
of Sri Lanka (Fig. 4a–c) suggests, upon visual inspection,
that the approach may be able to better capture the expected
influence of topography on heat waves beyond global mod-
els, particularly since successive resolution enhancements re-
veal distinct orographic patterns. On the other hand, the sta-
tistical hypothesis test does not necessarily indicate signifi-
cant improvement, which suggests the importance of multi-
metric explorations and rigorous evaluation of downscaling
results. However, while the value of dynamical downscal-
ing as a tool for hypothesis testing cannot be denied (despite
news articles such as Kerr, 2013), the propagation of uncer-
tainty (Sain et al., 2011) remains a challenge for projections.
Over India, while global models suggest a uniform increase
in rainfall extremes trends, the results from statistical down-
scaling (Fig. 4d–f) show evidence for considerable geograph-
ical heterogeneity, which in turn agree with the latest findings
on spatial variability of extremes (Ghosh et al., 2011).

7 Complexity of uncertainty assessments

A thorough and comprehensive characterization and quantifi-
cation of uncertainty, which may result from imprecise ob-
servational data, inadequate models, or intrinsic climate sys-
tem variability, is invaluable for stakeholders and policymak-
ers but difficult and often even impossible to achieve. Best-
estimate projections and corresponding uncertainty bounds
under climate change are sometimes thought to be better cap-
tured with multimodel ensembles. It is important to evalu-
ate the ability of models to simulate historical climate pat-
terns (Pierce et al., 2009), but that alone may not be suffi-
cient for climate models in view of non-stationarity and long
lead time projections. Multimodel agreement in the future
becomes an important metric, with the notion that consen-
sus implies higher certainty (Smith et al., 2009; Weigel et
al., 2010). Empirical studies suggest that averages of output
from multiple models outperform individual models, this in-
sight being insensitive to which specific models are averaged
(Pierce et al., 2009). However, the value of multimodel av-
erages has been questioned (Knutti, 2010), particularly for
regional assessments (Knutti et al., 2010; Kodra et al., 2012).
Recent attempts at regional assessments include the develop-
ment of statistical methods that consider both model perfor-
mance relative to historical observed data and model ensem-
ble agreement (Smith et al., 2009; Ganguly et al., 2013).

One way to improve the uncertainty assessment ap-
proaches may be to consider physical and correlative rela-
tions in combination with historical model skills and future
multimodel agreement. For example, in Fig. 5, observations
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Figure 4. Precise projections with downscaling generate bigger data.(a)–(c) An example of dynamical downscaling that shows changes in
heat wave intensity over Sri Lanka from 2006–2015 to 2056–2065 projected by the Community Climate System Model Version 4 (CCSM4) at
100 km spatial resolution and dynamically downscaled by the Weather Research and Forecasting (WRF) model at three successively enhanced
spatial resolutions: 36, 12, and 4 km. Dynamical downscaling yields significant computational challenges. A goodness-of-fit comparison, via
the Kolmogorov–Smirnov (KS) tests (c), does not yield substantial evidence for differences in spatial distributions of model runs, which is
probably owing to small sample sizes for the 100 km and 36 km resolution data. However, the effects of topography in the mid-southern Sri
Lanka appear more prominent at higher resolutions. The sheer size of the newly generated dynamically downscaled simulations, as well as
the problem complexity, further intensifies the need for big data solutions.(d)–(f) Statistical downscaling is complementary to dynamical
downscaling and usually requires significantly fewer computational resources. Here we perform statistical downscaling by relating fine-
resolution rainfall observations with a large set of climate model-simulated variables and using the relation first to validate on unseen data
and then for precise projections in the future. The results show how an ensemble of five runs of the Canadian Centre for Climate Modelling
and Analysis (CCCMA) Coupled Global Climate Model 3.1 (CGCM3.1). T47 GCM is validated for 20th century simulations (top two
maps ind), and then applied to the Special Report on Emissions Scenarios (SRES) A2 scenario for 2070–2099 (bottom two maps ind).
Geographical heterogeneity in the trends of rainfall extremes over India, shown in a recent observation-based study, is suggested after
downscaling but not directly from the global model runs (Ghosh et al., 2011).

and model simulations may exhibit regional differences in
their adherence to known physical relations. Evaluating the
extent to which observed rainfall extremes follow physical
relationships like the Clausius–Clapeyron (CC) may help
identify systematic patterns in extreme rainfall behavior that

could be encapsulated in multimodel uncertainty quantifica-
tion methodology. We are not aware of any existing statisti-
cal strategy (e.g., along the lines of Smith et al., 2009) that
attempts to explicitly utilize theoretical physical processes
in addition to historical skills and multimodel agreement.
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(a)

(b)

Figure 5. Uncertainty quantification adds to the big data challenge. Multimodel ensembles have been used to quantify uncertainty in the
structural representation of climate physics; their performance has been evaluated by investigating skills in reproducing historical behavior
(skills) and multimodel agreement (convergence) in the future. Here we investigate the uncertainty in precipitation extremes and explore
whether physically based relations, like the temperature-dependence of precipitation extremes through the saturation vapor pressure (known
as the Clausius–Clapeyron, or CC, relation), may help further inform uncertainty assessments and skill-based model selection. For the
(a) southeastern and(b) southwestern US, a 7-member CMIP3 model ensemble is used for the analysis, with NCEP2 used as a baseline
model and the theoretical CC curve shown for comparison. Every point from each model represents a 20 year mean temperature (1980–
1999) on thex axis and a 30 year daily rainfall return value, i.e., a daily rainfall intensity that on average occurs or is exceeded only once
in 30 years (1980–1999,y axis) with nonlinear regressions fit to each data set and uncertainty bounds computed using a bootstrap-based
resampling procedure. The value of using the multivariate physically based CC relation in uncertainty quantification is suggested, particularly
for extremes (specifically, heavy rainfall) where covariate relations (specifically, temperature-dependence) are known from process physics
(e.g., Clausius–Clapeyron).

In Fig. 5a, the observations and multiple GCMs are com-
pared to the theoretical CC (scaled to compare with the other
curves) over the eastern US. An analogous plot is shown for
the southwestern US in Fig. 5b; the use of different regions
makes apparent the degree to which data (observed and mod-
eled) adheres to conceptual physical relations (in this exam-
ple, the CC). Each point represents a 20-year mean temper-
ature (1980–1999,x axis) and an estimated 30 year return
rainfall value (calculated from 1980–1999,y axis; Kharin

and Zwiers, 2007) for a land-based grid cell. Polynomial
spline regression, a nonparametric smoothing regression ap-
proach (Taylor, 2012), is used to fit the rainfall return values
on mean temperature. This is performed for all models and
for NCEP2 reanalysis. Regression model fits are depicted by
the colored lines. The theoretical CC relation is depicted by
the red line; a manually calibrated multiplication scaling fac-
tor of 0.00023 (0.00027 for the southwest) was applied for
visual purposes (to line the CC up in the same space as the
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data) that should not affect the results significantly. Note that
the level of the CC line has no real meaning beyond this scal-
ing; only the exponential pattern does. Uncertainty bounds
for the multimodel ensemble are created with a resampling
scheme combined with the same spline regression.

Besides model-to-model uncertainty, internal model vari-
ability due to different choices of parameters is also a major
source of uncertainty but is more difficult to quantify due
to computational constraints. Generating model simulations
with multiple sets of parameters generates (Stainforth et al.,
2005) a large number of simulations from a single GCM but
requires enormous computational resources (Stainforth et al.,
2002, 2005). Such an approach may generate substantial sin-
gle model insights (Stainforth et al., 2005) but is not yet fea-
sible on a massive, multimodel scale. Evaluation of multiple
models remains an important step in comprehensive uncer-
tainty assessments, even though structural differences may
make inter-model comparisons difficult and at times even
infeasible.

Requirements to provide uncertainty estimates almost in-
variably magnify the data challenge, both by generating
more model-simulated data (Stainforth et al., 2005) and/or
by requiring more data-intensive approaches. Even relatively
easily parallelizable approaches like the bootstrap method,
which has been used with EVT (Ghosh et al., 2011; Kao
and Ganguly, 2011; Kharin et al., 2007) to characterize un-
certainties in return level estimates of climate variables, can
benefit significantly from parallel processing. The recently
developed method of “bag of little bootstraps” (Kleiner et
al., 2014), claims to have significantly improved the time-
complexity of the bootstrap method for large data sets with
theoretical guarantees of correctness of uncertainty esti-
mates. The adaptation of these techniques in space and time
for observed and model-simulated climate data across mul-
timodel and multiple initial condition runs and with differ-
ent statistical estimation approached may represent major
challenges.

8 Enhanced understanding and predictions

Climate extremes, such as heavy rainfall or tropical cyclones,
are known to depend on other climate variables (including
mean states, local or regional variables, as well as large-scale
effects such as oceanic indices) that may be better simulated
by models, such as land and sea surface temperatures. De-
velopments in correlative analysis (Reshef et al., 2011; Khan
et al., 2007; Kinney and Atwal, 2014), extended to handle
correlated data at multiple spatial and temporal scales, may
help quantify conceptual understanding and possibly even
discover new dependencies (Khan et al., 2006). Challenges
in analyses of historical extreme events such as tornado and
hurricane data involve attributing spatial and temporal scales
of their behavior to climate change versus natural variabil-
ity (Emanuel et al., 2008; Webster et al., 2005), as well as to

data collection issues for tornadoes and cyclones (Brooks and
Doswell, 2001; Emanuel, 2005) and discontinuity of opera-
tional definitions for tornadoes (Doswell et al., 2009). Inno-
vative data-driven approaches that consider these complexi-
ties are needed to build understanding of the physical behav-
ior and drivers of tornadoes and hurricanes because physics-
based modeling for these types of processes is still in early
stages (Emanuel et al., 2008; Trapp et al., 2010).

New process understanding or novel insights from mining
climate data may help enhance projections and ultimately
reduce uncertainty. Although relatively coarse-resolution
GCM are not able to directly simulate tropical cyclones, they
have been used to develop aggregate statistics of hurricanes
(Emanuel et al., 2008) under climate change. In the same
manner, temperature and updraft velocity profiles have been
used to constrain or enhance multimodel projections of pre-
cipitation extremes (Knutson et al., 2010; Wilhite and Glantz,
1985). Additionally, ensembles have been found to simu-
late robust statistics of severe thunderstorm environments
and imply increased risk in possible convective hazards un-
der global warming (Diffenbaugh et al., 2013). These ap-
proaches point to the information content in auxiliary vari-
ables relevant for climate extremes, and with appropriate
adaptations, may lead to a virtuous cycle where data-driven
insights and process understanding mutually inform, com-
plement, and improve each other. Recently, even tornado oc-
currences have been associated with monthly environmental
parameters (Tippett et al., 2012), though not necessarily in a
climate change context.

Linear dimensionality reduction has been used (Mishra et
al., 2012) for advancing understanding of climate processes
like monsoons, which are known to be important for hydrom-
eteorological extremes. The relationships among large and
high dimensional climate data can improve understanding of
dominant processes and lead to enhanced projections through
predictive modeling. The IPCC-SREX indicates that crucial
processes that may influence climate extremes, such as El
Niño or other climate oscillators and monsoons, are not well
understood. Inferences from surrogate data may yield new
insights on extremes processes: the use of ocean salinity data
to understand the intensification of climate extremes (Durack
et al., 2012) provides an example using a proxy data set for
precipitation. Figure 6a–b provides an example where new
data mining methods (Kawale et al., 2011, 2013) for dipole
discovery were used to extract information about climate os-
cillators that may be useful for model evaluation.

An intelligent combination of process understanding with
data mining methods may yield new explainable predic-
tive insights beyond statistical downscaling. In fact, the
premise of statistical downscaling (discussed earlier), where
one overall approach is linear dimensionality reduction fol-
lowed by nonlinear regression (Ghosh, 2010), is that lower-
resolution model outputs have information content about
higher-resolution variables. We propose taking this one step
further. Variables that are more reliably projected by climate
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Figure 6. Predictive insights from observations and model simulations.(a)–(b) Dipoles were detected using sea level pressure (SLP) from
NCEP2 reanalysis and the GFDL CM2.1 GCM from CMIP3 (a andb, respectively) from the year 1979 to 2000. Dipoles are a class of
teleconnections, or long-range dependence in space, that represent a persistent and large-scale temporal negative correlation in a given cli-
mate variable between two neighboring or distant geographical locations. The dipoles shown here are generated using the shared reciprocal
nearest neighbors (SRNN) algorithm graphical approach (Kawale et al., 2013). The edges of the graph, shown in the figure, represent dipole
connections between two regions, while the color in the background shows the SRNN density, where darker colors signify regions of higher
connectivity. This class of methods may be useful for systematically detecting, refining existing, or even identifying new, climate teleconnec-
tions or oscillations, as well as for model evaluation.(c) While critical for statistical downscaling and relating ocean-based indices to regional
land climatology, regression problems in climate may be particularly difficult to solve reliably, owing to issues like high dimensionality (large
input variables compared to the number of calibration or training data), proximity-based spatial correlations, and teleconnections. Here we
use multiple ocean variables (as predictors or covariates) to predict changes in land precipitation for multiple regions using NCEP1 reanalysis.
The results indicate that a new approach, called the Sparse Group Lasso (SGL: Chatterjee et al., 2012), outperforms ordinary least squares
and LASSO regressions (Tibshirani, 2011) as per both error-based predictive accuracy and model parsimony. Model parsimony refers to
simpler models with lesser number of parameters, which in turn tend to generalize better than more complex models, especially if predictive
accuracy on training data remains identical or also gets lower. Where climate extremes of interest (e.g., hurricanes or rainfall extremes) are
projected less reliably but relate to variables (i.e., potential covariates) that are better projected (e.g., oceanic or land temperature), methods
such as the SGL and future innovations may enhance projections beyond model simulations alone. We note that the ordinary least squares
(OLS) approach serves only as a very naïve baseline for this analysis. In the OLS approach shown here, the number of covariates selected is
simply all covariates considered; OLS intrinsically assigns non-zero coefficients to all covariates. With so many covariates, almost certainly
the OLS model will have nonsensical non-zero parameters due to issues like multi-collinearity. We acknowledge the fact that procedures like
stepwise least squares may improve on the naïve OLS reduce shown here by reducing the dimensionality of the problem. However, forward
versus backward versus mixed stepwise procedures have their own set of problems related to multi-collinearity and changes in coefficients
with addition or removal of covariates, among others. Still, we present the naïve all-covariate OLS purely as a baseline for comparison
without implying that it is or should be used in high-dimensional problems of this nature.

Nonlin. Processes Geophys., 21, 777–795, 2014 www.nonlin-processes-geophys.net/21/777/2014/



A. R. Ganguly et al.: Toward enhanced understanding and projections of climate extremes 789

models may be used not only to improve our process un-
derstanding but also to enhance projections of the climate
extremes of interest. For enhanced climate projections, es-
pecially given the importance of spatiotemporal neighbor-
hoods, prevailing winds, intra-decadal to multi-decadal cli-
mate oscillators, and teleconnections, the number of poten-
tial explanatory variables may far exceed the number of
observations available, which creates problems for classic
regression.

Popular dimensionality reduction approaches like empiri-
cal orthogonal functions (Hannachi et al., 2007) summarize
complex data succinctly but may not necessarily do so in a
way that maximizes information useful for predicting a spe-
cific variable. Sparse regression (Negahban and Wainwright,
2011; Negahban et al., 2012) represents promising alterna-
tives under these situations. Sparse regressions based on con-
straining the L1-norm of the regression coefficients became
popular due to their ability to handle high dimensional data
unlike the regular regressions, which suffer from overfitting
and model identifiability issues especially when sample size
is small. They are often the method of choice in many fields
of science and engineering for simultaneously selecting co-
variates and fitting parsimonious linear models that are better
generalizable and easily interpretable. Sparse regularization
methods have just begun to be applied to statistical downscal-
ing (Ebtehaj et al., 2012; Phatak et al., 2011) . However, this
method can also be applied for improved understanding of
the complex dependence structure between climate variables,
especially in a high-dimensional setting (Chatterjee et al.,
2012; Das et al., 2012, 2013). Dimensionality reduction tech-
niques that utilize manifold, atomic, and topological struc-
tures derived directly from physical laws (Kpotufe, 2009,
2011; Balakrishnan et al., 2013a, b; Kpotufe and Garg, 2013;
Lum et al., 2013; Wang et al., 2014) at once could make the
prediction problem both more computationally tractable and
physically sensible. High-performance computational chal-
lenges related to this general approach represent an active
area of research.

Networks that connect nodes defined as spatial grid-cells
(Steinhaeuser et al., 2011b; Donges et al., 2013) or climate
oscillators (Donges et al., 2009a), often known as “climate
networks”, may be useful when representing climate de-
pendencies and develop process understanding (Donges et
al., 2009a, b). Figure 6c provides an example of new data-
driven predictive approaches (Chatterjee et al., 2012) that
appear well-suited for high-dimensional and geographically
distributed climate data with complex dependence structures.
Network-based graphical models have been used to dis-
cover causality among different modes of climate variability
(Ebert-Uphoff and Deng, 2012; Runge et al., 2009). Appli-
cations of methods in nonlinear data sciences, from com-
plex networks (Steinhaeuser et al., 2011a) to multifractals
(García-Marín et al., 2013; Muzy et al., 2006) and dynamic
Bayesian networks (Troy et al., 2013), have demonstrated
initial promise for better description and predictive insights

on climate-related extremes such as extreme monsoonal rain-
fall over south Asia (Malik et al., 2011). Certain methods
may eventually be applicable in a climate change detection
context, potentially making similar innovations useful for not
only long horizon prediction and uncertainty reduction but
also for relatively abrupt change and disturbance analysis or
even for early warning systems.

9 Summary

One of the largest scientific gaps in climate change stud-
ies is the inability to develop credible projections of ex-
tremes with the degree of precision required for adaptation
decisions and policy (Fischer et al., 2013). The dire con-
sequences of climate-related extremes, even in developed
economies (Gall et al., 2011), may call for a range of well-
informed adaptation strategies from low-regret (Wilby and
Keenan, 2012) to transformative (Kates et al., 2012). Improv-
ing regional projections (e.g., through variable selection or
statistical downscaling) and characterizing natural variabil-
ity (e.g., irreducible uncertainty at decadal scales: Hawkins
and Sutton, 2009, 2011; Branstator and Teng, 2012; Deser
et al., 2012a, b; Fischer et al., 2013; Hu and Deser, 2013;
Rosner et al., 2014) are necessary for informing adapta-
tion at stakeholder-relevant scales and planning horizons.
As climate-related data approaches the scale of hundreds of
petabytes (Overpeck et al., 2011) and climate data mining re-
search continues to improve (Smyth et al., 1999; Robertson et
al. 2004, 2006; Khan et al., 2006; Camargo et al., 2007a, b;
Gaffney et al., 2007), new opportunities will emerge (e.g.,
Schneider et al., 2013; Monteleoni et al., 2013; Ganguly
et al., 2013). The 2014 Climate Data Initiative (Lehmann,
2014) launched by the White House (United States Presi-
dent’s Office) points to big data as a solution for climate
adaptation and lends further urgency of the theme discussed
in this manuscript. However, despite the promise, pitfalls in
pure data mining methods have been pointed out in the con-
text of climate. For example, Caldwell et al. (2014) shows
how naive applications of data mining may yield spurious
relationships in climate. This paper emphasizes the need to
intelligently combine an understanding of physics with data
mining, not just to avoid the risk of generating misleading
insights, but also to produce novel results that may not have
been possible otherwise. Data-driven methods may be com-
plementary to physics and may need to be constrained by
physics (e.g., see Majda and Yuan, 2012; Majda and Hardin,
2013). When mining climate model simulations, data mining
is conditioned on the embedded physics in the models, and
aspires to extract relations that may further inform and aug-
ment our current physical understanding. However, to be suc-
cessful, data mining methods need to be aware of the com-
plexity of climate processes and data. The methods may be
motivated from often disparate data-science disciplines such
as statistics and econometrics, machine learning and data
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mining in computer science, nonlinear dynamics in physics
and signal processing in engineering. The blend of physics
and data-driven insights has conceptual similarities with data
assimilation methods (e.g., Gerber and Joos, 2013). How-
ever, data assimilation methods are ultimately constrained by
the physics encoded within climate models, and updates to
parameters or state variables cannot be made in the future
where no observations exist. The physics-guided data min-
ing discussed here refers to, for example, physics-motivated
decomposition into component processes (e.g., Ganguly and
Bras, 2003, offers an example in weather forecasting), phys-
ically motivated variable selection in statistical downscaling
(e.g., certain analog methods; Zorita and von Storch, 1998),
or physics-based model selection (Fasullo and Trenberth,
2012) and physically guided climate networks (Donges et
al., 2009b; Steinhaeuser and Tsonis, 2013). The climate ex-
tremes exemplars discussed here are a collection of outstand-
ing challenges where data mining already does or can play
an innovative new role; various scientific communities will
have to decide which specific directions to pursue guided
by a combination of stakeholder priorities and which prob-
lems they are best positioned to address. Once developed and
refined, physics-guided data mining methods are well posi-
tioned to produce new scientific understanding and credible
projections of climate extremes leading to more informed
adaptation and policy.
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