Articles | Volume 25, issue 1
https://doi.org/10.5194/npg-25-55-2018
https://doi.org/10.5194/npg-25-55-2018
Research article
 | 
30 Jan 2018
Research article |  | 30 Jan 2018

Optimal transport for variational data assimilation

Nelson Feyeux, Arthur Vidard, and Maëlle Nodet

Related authors

Updates to the Met Office’s global ocean-sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143,https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Comparison of different ensemble assimilation methods in a modular hydrological model dedicated to water quality management
Emilie Rouzies, Claire Lauvernet, and Arthur Vidard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-219,https://doi.org/10.5194/hess-2024-219, 2024
Preprint under review for HESS
Short summary
NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO
A. Vidard, P.-A. Bouttier, and F. Vigilant
Geosci. Model Dev., 8, 1245–1257, https://doi.org/10.5194/gmd-8-1245-2015,https://doi.org/10.5194/gmd-8-1245-2015, 2015
Short summary
An ETKF approach for initial state and parameter estimation in ice sheet modelling
B. Bonan, M. Nodet, C. Ritz, and V. Peyaud
Nonlin. Processes Geophys., 21, 569–582, https://doi.org/10.5194/npg-21-569-2014,https://doi.org/10.5194/npg-21-569-2014, 2014
Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012,https://doi.org/10.5194/tc-6-1561-2012, 2012

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary

Cited articles

Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, SIAM, 306 pp., 2016.
Benamou, J.-D. and Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 375–393, 2000.
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014.
Bonneel, N., Van De Panne, M., Paris, S., and Heidrich, W.: Displacement interpolation using Lagrangian mass transport, in: ACM Transactions on Graphics (TOG), 30, No. 158, ACM, 2011.
Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R., and Sobolevskiĭ, A.: Reconstruction of the early Universe as a convex optimization problem, Mon. Not. R. Astron. Soc., 346, 501–524, 2003.
Download
Short summary
In geophysics, numerical models are generally initialized through so-called data assimilation methods. They require computation of a distance between model fields and physical observations. The most common choice is the Euclidian distance. However, due to its local nature it is not well suited for capturing position errors. This papers investigates theoretical aspects of the use of the optimal transport-based Wasserstein distance in this context and shows that it is able to capture such errors.