Articles | Volume 25, issue 1
https://doi.org/10.5194/npg-25-55-2018
https://doi.org/10.5194/npg-25-55-2018
Research article
 | 
30 Jan 2018
Research article |  | 30 Jan 2018

Optimal transport for variational data assimilation

Nelson Feyeux, Arthur Vidard, and Maëlle Nodet

Related authors

Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Comparison of different ensemble assimilation methods in a modular hydrological model dedicated to water quality management
Emilie Rouzies, Claire Lauvernet, and Arthur Vidard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-219,https://doi.org/10.5194/hess-2024-219, 2024
Revised manuscript accepted for HESS
Short summary
NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO
A. Vidard, P.-A. Bouttier, and F. Vigilant
Geosci. Model Dev., 8, 1245–1257, https://doi.org/10.5194/gmd-8-1245-2015,https://doi.org/10.5194/gmd-8-1245-2015, 2015
Short summary
An ETKF approach for initial state and parameter estimation in ice sheet modelling
B. Bonan, M. Nodet, C. Ritz, and V. Peyaud
Nonlin. Processes Geophys., 21, 569–582, https://doi.org/10.5194/npg-21-569-2014,https://doi.org/10.5194/npg-21-569-2014, 2014
Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012,https://doi.org/10.5194/tc-6-1561-2012, 2012

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Explaining the high skill of reservoir computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra
Nonlin. Processes Geophys., 32, 201–224, https://doi.org/10.5194/npg-32-201-2025,https://doi.org/10.5194/npg-32-201-2025, 2025
Short summary
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
Nonlin. Processes Geophys., 32, 167–187, https://doi.org/10.5194/npg-32-167-2025,https://doi.org/10.5194/npg-32-167-2025, 2025
Short summary
Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
Nonlin. Processes Geophys., 32, 117–130, https://doi.org/10.5194/npg-32-117-2025,https://doi.org/10.5194/npg-32-117-2025, 2025
Short summary
Bridging Data Assimilation and Control: Ensemble Model Predictive Control for High-Dimensional Nonlinear Systems
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-595,https://doi.org/10.5194/egusphere-2025-595, 2025
Short summary
Evaluation of Effectiveness of Intervention Strategy in Control Simulation Experiment through Comparison with Model Predictive Control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-26,https://doi.org/10.5194/npg-2024-26, 2024
Revised manuscript accepted for NPG
Short summary

Cited articles

Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, SIAM, 306 pp., 2016.
Benamou, J.-D. and Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 375–393, 2000.
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014.
Bonneel, N., Van De Panne, M., Paris, S., and Heidrich, W.: Displacement interpolation using Lagrangian mass transport, in: ACM Transactions on Graphics (TOG), 30, No. 158, ACM, 2011.
Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R., and Sobolevskiĭ, A.: Reconstruction of the early Universe as a convex optimization problem, Mon. Not. R. Astron. Soc., 346, 501–524, 2003.
Download
Short summary
In geophysics, numerical models are generally initialized through so-called data assimilation methods. They require computation of a distance between model fields and physical observations. The most common choice is the Euclidian distance. However, due to its local nature it is not well suited for capturing position errors. This papers investigates theoretical aspects of the use of the optimal transport-based Wasserstein distance in this context and shows that it is able to capture such errors.
Share