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Abstract. Usually data assimilation methods evaluate
observation-model misfits using weighted L2 distances.
However, it is not well suited when observed features are
present in the model with position error. In this context, the
Wasserstein distance stemming from optimal transport the-
ory is more relevant.

This paper proposes the adaptation of variational data as-
similation for the use of such a measure. It provides a short
introduction of optimal transport theory and discusses the im-
portance of a proper choice of scalar product to compute the
cost function gradient. It also extends the discussion to the
way the descent is performed within the minimization pro-
cess.

These algorithmic changes are tested on a nonlinear
shallow-water model, leading to the conclusion that optimal
transport-based data assimilation seems to be promising to
capture position errors in the model trajectory.

1 Introduction

Understanding and forecasting the evolution of a given sys-
tem is a crucial topic in an ever-increasing number of appli-
cation domains. To achieve this goal, one can rely on multi-
ple sources of information, namely observations of the sys-
tem, numerical model describing its behavior and additional
a priori knowledge such as statistical information or previous
forecasts. To combine these heterogeneous sources of obser-
vation it is common practice to use so-called data assimi-
lation methods (e.g., see reference books Lewis et al., 2006;
Law et al., 2015; Asch et al., 2016). They have multiple aims:
finding the initial and/or boundary conditions, parameter es-
timation, reanalysis, and so on. They are extensively used in
numerical weather forecasting, for instance (e.g., see reviews
in the books Park and Xu, 2009, 2013).

The estimation of the different elements to be sought, the
control vector, is performed using data assimilation through
the comparison between the observations and their model
counterparts. The control vector should be adjusted such that
its model outputs would fit the observations, while taking
into account that these observations are imperfect and cor-
rupted by noise and errors.

Data assimilation methods are divided into three distinct
classes. First, there is statistical filtering based on Kalman
filters. Then, there are variational data assimilation methods
based on optimal control theory. More recently hybrids of
both approaches have been developed (Hamill and Snyder,
2000; Buehner, 2005; Bocquet and Sakov, 2014). In this pa-
per we focus on variational data assimilation. It consists in
minimizing a cost function written as the distance between
the observations and their model counterparts. A Tikhonov
regularization term is also added to the cost function as a
distance between the control vector and a background state
carrying a priori information.

Thus, the cost function contains the misfit between the
data (a priori and observations) and their control and model
counterparts. Minimizing the cost function aims at reaching
a compromise in which these errors are as small as possible.
The errors can be decomposed into amplitude and position
errors. Position errors mean that the structural elements are
present in the data, but misplaced. Some methods have been
proposed in order to deal with position errors (Hoffman and
Grassotti, 1996; Ravela et al., 2007). These involve a prepro-
cessing step which consists in displacing the different data so
they fit better with each other. Then the data assimilation is
performed accounting for those displaced data.

A distance has to be chosen in order to compare the dif-
ferent data and measure the misfits. Usually, a Euclidean dis-
tance is used, often weighted to take into account the statis-
tical errors. But Euclidean distances have trouble capturing
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Figure 1. Wasserstein (W) and Euclidean (L2) averages of two
curves ρ0 and ρ1.

position errors. This is illustrated in Fig. 1, which shows two
curves ρ0 and ρ1. The second curve ρ1 can be seen as the
first one ρ0 with position error. The minimizer of the cost
function ‖ρ−ρ0‖

2
+‖ρ−ρ1‖

2 is given by ρ∗ = 1
2 (ρ0+ρ1),

plotted with violet stars of Fig. 1. It is the average of curves
ρ0 and ρ1 with respect to the L2 distance. As we can see
in Fig. 1, it does not correct for position error, but instead
creates two smaller amplitude curves. We investigate in this
article the idea of using instead a distance stemming from
optimal transport theory – the Wasserstein distance, which
can take into account position errors. In Fig. 1 we plot (green
dots) the average of ρ0 and ρ1 with respect to the Wasser-
stein distance. Contrary to the L2 average, the Wasserstein
average is what we want it to be: same shape, same ampli-
tude, located in-between. It conserves the shape of the data.
This is what we want to achieve when dealing with position
errors.

Optimal transport theory has been pioneered by Monge
(1781). He searched for the optimal way of displacing sand
piles onto holes of the same volume, minimizing the total
cost of displacement. This can be seen as a transportation
problem between two probability measures. A modern pre-
sentation can be found in Villani (2003) and will be discussed
in Sect. 2.2.

Optimal transport has a wide spectrum of applications:
from pure mathematical analysis on Riemannian spaces to
applied economics; from functional inequalities (Cordero-
Erausquin et al., 2004) to the semi-geostrophic equations
(Cullen and Gangbo, 2001); and in astrophysics (Brenier
et al., 2003), medicine (Ratner et al., 2015), crowd motion
(Maury et al., 2010) or urban planning (Buttazzo and San-
tambrogio, 2005). From optimal transport theory several dis-
tances can be derived, with the most widely known being the
Wasserstein distance (denoted W) which is sensitive to mis-
placed features and is the primary focus of this paper. This
distance is also widely used in computer vision, for exam-
ple in classification of images (Rubner et al., 1998, 2000),

interpolation (Bonneel et al., 2011) or movie reconstruction
(Delon and Desolneux, 2010). More recently, Farchi et al.
(2016) used the Wasserstein distance to compare observation
and model simulations in an air pollution context, which is a
first step toward data assimilation.

Actual use of optimal transport in a variational data as-
similation has been proposed by Ning et al. (2014) to tackle
model error. The authors use the Wasserstein distance instead
of the classical L2 norm for model error control in the cost
function, and they offer promising results. Our contribution is
in essence similar to them in the fact that the Wasserstein dis-
tance is proposed in place of the L2 distance. Looking more
closely, we investigate a different question, namely the idea
of using the Wasserstein distance to measure the observation
misfit. Also, we underline and investigate the impact of the
choice of the scalar products, gradient formulations and min-
imization algorithm choices on the assimilation performance,
which is not discussed in Ning et al. (2014). These particu-
larly subtle mathematical considerations are indeed crucial
for the algorithm convergence, as will be shown in this pa-
per, and are our main contribution.

The goal of the paper is to perform variational data assim-
ilation with a cost function written with the Wasserstein dis-
tance. It may be extended to other type of data assimilation
methods such as filtering methods, which largely exceeds the
scope of this paper.

The present paper is organized as follows: first, in Sect. 2,
variational data assimilation as well as the Wasserstein dis-
tance are defined, and the ingredients required in the follow-
ing are presented. The core of our contribution lies in Sect. 3:
we first present the Wasserstein cost function and then pro-
pose two choices for its gradients, as well as two optimiza-
tion strategies for the minimization. In Sect. 4 we present
numerical illustrations, discuss the choices for the gradients
and compare the optimization methods. Also, some difficul-
ties related to the use of optimal transport will be pointed out
and solutions will be proposed.

2 Materials and methodology

This section deals with the presentation of the variational
data assimilation concepts and method on the one hand and
optimal transport and Wasserstein distance concepts, princi-
ples and main theorems on the other hand. Section 3 will
combine both worlds and will constitute the core of our orig-
inal contribution.

2.1 Variational data assimilation

This paper focuses on variational data assimilation in the
framework of initial state estimation. Let us assume that a
system state is described by a variable x, denoted x0 at ini-
tial time. We are also given observations yobs of the system,
which might be indirect, incomplete and approximate. The
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initial state and the observations are linked by operator G,
mapping the system initial state x0 to the observation space,
so that G(x0) and yobs belong to the same space. Usually G
is defined using two other operators, namely the model M
which gives the model state as a function of the initial state
and the observation operator H which maps the system state
to the observation space, such that G =H ◦M.

Data assimilation aims to find a good estimate of x0 us-
ing the observations yobs and the knowledge of the operator
G. Variational data assimilation methods do so by finding the
minimizer x0 of the misfit function J (the cost function) be-
tween the observations yobs and their computed counterparts
G(x0),

J (x0)= dR

(
G(x0),y

obs
)2
,

with dR some distance to be defined. Generally, this problem
is ill-posed. For the minimizer of J to be unique, a back-
ground term is added and acts like a Tikhonov regularization.
This background term is generally expressed as the distance
with a background term xb, which contains a priori informa-
tion. The actual cost function then reads

J
(
x0)= dR(G(x0),y

obs
)2
+ dB

(
x0,x

b
)2
, (1)

with dB another distance to be specified. The control of x0 is
done by the minimization of J . Such minimization is gen-
erally carried out numerically using gradient descent meth-
ods. Section 3.3 will give more details about the minimiza-
tion process.

The distances to the observations dR and to the back-
ground term dB have to be chosen in this formulation. Usu-
ally, Euclidean distances (L2 distances, potentially weighted)
are chosen, giving the following Euclidean cost function

J (x0)= ‖G(x0)− yobs
‖

2
2+‖x0− xb

‖
2
2, (2)

with ‖ · ‖2 the L2 norm defined by

‖a‖22 :=
∫
|a(x)|2 dx. (3)

Euclidean distances, such as the L2 distance, are local
metrics. In the following we will investigate the use of a
non-local metric, the Wasserstein distanceW , in place of dR
and dB in Eq. (1). Such a cost function will be presented in
Sect. 3. The Wasserstein distance is presented and defined in
the following subsection.

2.2 Optimal transport and Wasserstein distance

The essentials of optimal transport theory and Wasserstein
distance required for data assimilation are presented.

We define, in this order, the space of mass functions where
the Wasserstein distance is defined, then the Wasserstein dis-
tance and finally the Wasserstein scalar product, a key ingre-
dient for variational assimilation.

2.2.1 Mass functions

We consider the case where the observations can be repre-
sented as positive fields that we will call “mass functions”.
A mass function is a nonnegative function of space. For ex-
ample, a grey-scaled image is a mass function; it can be seen
as a function of space to the interval [0,1] where 0 encodes
black and 1 encodes white.

Definition

Let � be a closed, convex, bounded set of Rd and let the set
of mass functions P(�) be the set of nonnegative functions
of total mass 1:

P(�) :=

ρ ≥ 0 :
∫
�

ρ(x)dx = 1

 . (4)

Let us remark here that, in the mathematical framework of
optimal transport, mass functions are continuous and they are
called “probability densities”. In the data assimilation frame-
work the concept of probability densities is mostly used to
represent errors. Here, the positive functions we consider ac-
tually serve as observations or state vectors, so we chose
to call them mass functions to avoid any possible confusion
with state or observation error probability distributions.

2.2.2 Wasserstein distance

Given the set of all transportations between two mass func-
tions, the optimal transport is the one minimizing the kinetic
energy. A transportation between two mass functions ρ0 and
ρ1 is given by a time path ρ(t,x) such that ρ(t = 0)= ρ0 and
ρ(t = 1)= ρ1 and given by a velocity field v(t,x) such that
the continuity equation holds,

∂ρ

∂t
+ div(ρv)= 0. (5)

Such a path ρ(t) can be seen as interpolating ρ0 and ρ1. For
ρ(t) to stay in P(�), a sufficient condition is that the veloc-
ity field v(t,x) should be tangent to the domain boundary,
meaning that ρ(t,x)v(t,x) ·n(x)= 0 for almost all (t,x) ∈
[0,1] × ∂�. With this condition, the support of ρ(t) remains
in �.

Let us be clear here that the time t is fictitious and has
no relationship whatsoever with the physical time of data as-
similation. It is purely used to define the Wasserstein distance
and some mathematically related objects.

The Wasserstein distance W is hence the minimum in
terms of kinetic energy among all the transportations be-
tween ρ0 and ρ1,

W(ρ0,ρ1)=

√√√√ min
(ρ,v)∈C(ρ0,ρ1)

∫∫
[0,1]×�

ρ(t,x)|v(t,x)|2 dtdx, (6)
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with C(ρ0,ρ1) representing the set of continuous transporta-
tions between ρ0 and ρ1 described by a velocity field v tan-
gent to the boundary of the domain,

C(ρ0,ρ1) :=

{
(ρ,v)s.t.

∂tρ+ div(ρv)= 0,
ρ(t = 0)= ρ0, ρ(t = 1)= ρ1,
ρv ·n= 0on∂�

}
. (7)

This definition of the Wasserstein distance is the Benamou–
Brenier formulation (Benamou and Brenier, 2000). There ex-
ist other definitions, based on the transport map or the trans-
ference plans, but this is slightly out of the scope of this arti-
cle. See the introduction of Villani (2003) for more details.

A remarkable property is that the optimal velocity field
v is of the form v(t,x)=∇8(t,x) with 8 following the
Hamilton–Jacobi equation (Benamou and Brenier, 2000)

∂t8+
|∇8|2

2
= 0. (8)

The equation of the optimal ρ is the continuity equation using
this velocity field. Moreover, the function 9 defined by

9(x) := −8(t = 0,x) (9)

is said to be the Kantorovich potential of the transport be-
tween ρ0 and ρ1. It is a useful feature in the derivation of the
Wasserstein cost function presented in Sect. 3.

A remarkable property of the Kantorovich potential allows
the computation of the Wasserstein distance, which is the
Benamou–Brenier formula (see Benamou and Brenier, 2000
or Villani, 2003, Theorem 8.1), given by

W(ρ0,ρ1)
2
=

∫
�

ρ0(x)|∇9(x)|
2 dx. (10)

Example

The classical example for optimal transport is the transport
of Gaussian mass functions. For �= Rd , let us consider two
Gaussian mass functions: ρi of mean µi and variance σ 2

i for
i = 0 and i = 1. Then the optimal transport ρ(t) between ρ0
and ρ1 is a transportation–dilation function of ρ0 to ρ1. More
precisely, ρ(t) is a Gaussian mass function whose mean is
µ0+ t (µ1−µ0) and variance is (σ0+ t (σ1−σ0))

2. The cor-
responding computed Kantorovich potential is (up to a con-
stant)

9(x)=

(
σ1

σ0
− 1

)
|x|2

2
+

(
µ1−

σ1

σ0
µ0

)
· x.

Finally, a few words should be said about the numerical
computation of the Wasserstein distance. In one dimension,
the optimal transport ρ(t,x) is easy to compute as the Kan-
torovich potential has an exact formulation: the Kantorovich
potential of the transport between two mass functions ρ0 and
ρ1 is the only function 9 such that

F1(x−∇9(x))= F0(x), ∀x, (11)

with Fi being the cumulative distribution function of ρi . Nu-
merically we fix x and solve iteratively Eq. (11) using a bi-
nary search to find ∇9. Then, we obtain 9 thanks to nu-
merical integration. Finally, Eq. (10) gives the Wasserstein
distance.

For two- or three-dimensional problems, there exists no
general formula for the Wasserstein distance and more com-
plex algorithms have to be used, such as the (iterative)
primal-dual one (Papadakis et al., 2014) or the semi-discrete
one (Mérigot, 2011). In the former, an approximation of the
Kantorovich potential is directly read in the so-called dual
variable.

2.2.3 Wasserstein inner product

The scalar product between two functions is required for
data assimilation and optimization: as we will recall later,
the scalar product choice is used to define the gradient value.
This paper will consider the classical L2 scalar product as
well as the one associated with the Wasserstein distance. A
scalar product defines the angle and norm of vectors tangent
to P(�) at a point ρ0. First, a tangent vector in ρ0 is the
derivative of a curve ρ(t) passing through ρ0. As a curve
ρ(t) can be described by a continuity equation, the space of
tangent vectors, the tangent space, is formally defined by (cf.
Otto, 2001)

Tρ0P =
{
η ∈ L2(�), s.t. η =−div(ρ0∇8)

with 8 s.t. ρ0
∂8

∂n
= 0 on ∂�

}
. (12)

Let us first recall that the Euclidean, or L2, scalar product
〈·, ·〉2 is defined on Tρ0P by

∀η,η′ ∈ Tρ0P(�), 〈η,η′〉2 :=
∫
�

η(x)η′(x)dx. (13)

The Wasserstein inner product 〈·, ·〉W is defined for η =
−div(ρ0∇8),η

′
=−div(ρ0∇8

′) ∈ Tρ0P by

〈η,η′〉W :=

∫
�

ρ0∇8 · ∇8
′ dx. (14)

One has to note that the inner product is dependent on ρ0 ∈

P(�). Finally, the norm associated with a tangent vector η =
−div(ρ0∇8) ∈ Tρ0P is

‖η‖2W =

∫
�

ρ0|∇8|
2 dx (15)

and hence the kinetic energy of the small displacement η.
This point makes the link between this inner product and the
Wasserstein distance.
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3 Optimal transport-based data assimilation

This section is our main contribution. First, we will consider
the Wasserstein distance to compute the observation term of
the cost function; second, we will discuss the choices of the
scalar product and the gradient descent method and their im-
pact on the assimilation algorithm efficiency.

3.1 Wasserstein cost function

In the framework of Sect. 2.2 we will define the data assim-
ilation cost function using the Wasserstein distance. For this
cost function to be well defined we assume that the control
variables belong to P(�) and that the observation variables
belong to another space P(�o) with �o a closed, convex,
bounded set of Rd ′ . Let us recall that this means that they
are all nonnegative functions with integral equal to 1. Hav-
ing elements with integral 1 (or constant integral) may seem
restrictive. Removing it is possible by using a modified ver-
sion of the Wasserstein distance, presented for example in
Chizat et al. (2015) or Farchi et al. (2016). For simplicity we
do not consider this possible generalization and all data have
the same integral. The cost function Eq. (1) is rewritten using
the Wasserstein distance defined in Sect. 2.2,

JW (x0)=
1
2

Nobs∑
i=1

W
(
Gi(x0),y

obs
i

)2
+
ωb

2
W
(
x0,x

b
0

)2
, (16)

with Gi : P(�)→ P(�o) the observation operator comput-
ing the yobs

i counterpart from x0 and ωb a scalar weight as-
sociated with the background term.

The variables x0 and yobs
i may be vectors whose compo-

nents are functions belonging to P(�) and P(�o) respec-
tively. The Wasserstein distance between two such vectors is
the sum of the distances between their components. The re-
mainder of the article is easily adaptable to this case, but for
simplicity we set x0 = ρ0 ∈ P(�) and yobs

i = ρ
obs
i ∈ P(�).

The Wasserstein cost function Eq. (16) then becomes

JW (ρ0)=
1
2

Nobs∑
i=1

W
(
Gi(ρ0),ρ

obs
i

)2
+
ωb

2
W
(
ρ0,ρ

b
0

)2
. (17)

As for the classical L2 cost function, JW is convex with
respect to the Wasserstein distance in the linear case and
has a unique minimizer. In the nonlinear case, the unique-
ness of the minimizer relies on the regularization term
ωb
2 W(ρ0,ρ

b
0)

2.
To find the minimum of JW , a gradient descent method is

applied. It is presented in Sect. 3.3. As this type of algorithm
requires the gradient of the cost function, computation of the
gradient of JW is the focus of next section.

3.2 Gradient of JW

If JW is differentiable, its gradient is given by

∀η ∈ Tρ0P, lim
ε→0

JW (ρ0+ εη)−JW (ρ0)

ε
= 〈η,g〉, (18)

where 〈·, ·〉 represents the scalar product. The scalar product
is not unique, so as a consequence neither is the gradient.
In this work we decided to study and compare two choices
for the scalar product – the natural one W and the usual one
L2. W is clearly the ideal candidate for a good scalar prod-
uct. However, we also decided to study the L2 scalar prod-
uct because it is the usual choice in optimization. Numerical
comparison is done in Sect. 4.

The associated gradients are respectively denoted as
gradWJW (ρ0) and grad2JW (ρ0) and are the only elements
of the tangent space Tρ0P of ρ0 ∈ P(�) such that

∀η ∈ Tρ0P, lim
ε→0

JW (ρ0+ εη)−JW (ρ0)

ε

=〈gradWJW (ρ0),η〉W

=〈grad2JW (ρ0),η〉2. (19)

Here in the notations, the term “grad” is used for the gradi-
ent of a function while the spatial gradient is denoted by the
nabla sign ∇. The gradients of JW are elements of Tρ0P and
hence functions of space.

The following theorem allows the computation of both
gradients of JW .

Theorem

For i ∈ {1, . . .,Nobs
}, let9i be the Kantorovich potential (see

Eq. 9) of the transport between Gi(ρ0) and ρobs
i . Let 9b be

the Kantorovich potential of the transport map between ρ0
and ρb

0 . Then,

grad2JW (ρ0)= ωb9
b
+

Nobs∑
i=1

G∗i (ρ0).9
i
+ c, (20)

with c such that the integral of grad2JW (ρ0) is zero and G∗i
the adjoint of Gi with respect to the L2 inner product (see
definition reminder below). Assuming that grad2JW (ρ0) has
the no-flux boundary condition (see comment about this as-
sumption below)

ρ0
∂grad2JW (ρ0)

∂n
= 0on∂�,

then the gradient with respect to the Wasserstein inner prod-
uct is

gradWJW (ρ0)=−div
(
ρ0∇[grad2JW (ρ0)]

)
. (21)

(A proof of this Theorem can be found in Appendix A.)
The adjoint G∗i (ρ0) is defined by the classical equality

∀η,µ ∈ Tρ0P, 〈G∗i (ρ0).µ,η〉2 = 〈µ,Gi(ρ0).η〉2, (22)

where Gi[ρ0] is the tangent model, defined by

∀η ∈ Tρ0P,Gi(ρ0).η := lim
ε→0

Gi(ρ0+ εη)−Gi(ρ0)

ε
. (23)
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Note that the no-flux boundary condition assumption for
grad2JW (ρ0), that is

ρ0
∂grad2JW (ρ0)

∂n
= 0on∂�,

is not necessarily satisfied. The Kantorovich potentials re-
spect this condition. Indeed, their spatial gradients are ve-
locities tangent to the boundary (see the end of Sect. 2.2).
But it may not be conserved through the mapping with the
adjoint model, G∗i (ρ0). In the case where G∗i (ρ0) does not
preserve this condition, the Wasserstein gradient is not of in-
tegral zero. A possible workaround is to use a product com-
ing from the unbalanced Wasserstein distance of Chizat et al.
(2015).

3.3 Minimization of JW

The minimizer of JW defined in Eq. (17) is expected to
be a good trade-off between both the observations and the
background with respect to the Wasserstein distance and to
have good properties, as shown in Fig. 1. It can be com-
puted through an iterative gradient-based descent method.
Such methods start from a control state ρ0

0 and step-by-step
update it using an iteration of the form

ρn+1
0 = ρn0 −α

ndn, (24)

where αn is a real number (the step) and dn is a function (the
descent direction), chosen such that JW (ρn+1

0 ) < JW (ρn0 ).
In gradient-based descent methods, dn can be equal to the
gradient of JW (steepest descent method) or to a function
of the gradient and dn−1 (conjugate gradient, CG; quasi-
Newton methods; etc.). Under sufficient conditions on (αn),
the sequence (ρn0 ) converges to a local minimizer. See No-
cedal and Wright (2006) for more details.

We will now explain how to adapt the gradient descent to
the optimal transport framework. With the Wasserstein gradi-
ent Eq. (21), the descent of JW follows an iteration scheme
of the form

ρn+1
0 = ρn0 +α

n div(ρn0∇8
n), (25)

with αn > 0 to be chosen.
The inconveniences of this iteration are twofold. First, for

ρn+1
0 to be nonnegative, αn may have to be very small. Sec-

ond, the supports of functions ρn+1
0 and ρn0 are the same. A

more transport-like iteration could be used instead, by mak-
ing ρn0 follow the geodesics in the Wasserstein space. All
geodesics ρ(α) starting from ρn0 are solutions of the set of
partial differential equations∂αρ+ div(ρ∇8)= 0, ρ(α = 0)= ρn0 ,

∂α8+
|∇8|2

2
= 0,

(26)

see Eq. (8). Furthermore, two different values of 8(α = 0)
give two different geodesics. In the optimal transport theory

Figure 2. Comparison of iteration Eqs. (25) and (28) with ρ0 of
limited support and 8 such that ∇8 is constant on the support of
ρ0.

community, the geodesic ρ(α) starting from ρn0 with initial
condition 8(α = 0)=80 would be written with the follow-
ing notation:

ρ(α)= (I −α∇80)#ρn0 (27)

(see Villani, 2003, Sect. 8.2 for more details).
For the gradient iteration, we choose the geodesic starting

from ρn0 with initial condition8(α = 0)=8n; i.e., using the
optimal transport notation ρn+1

0 is given by

ρn+1
0 = (I −αn∇8n)#ρn0 , (28)

with αn > 0 to be chosen. This descent is consistent with
Eq. (25) because Eq. (25) is the first-order discretization of
Eq. (26) with 8(α = 0)=8n. Therefore, Eqs. (28) and (25)
are equivalent when αn→ 0.

The comparison of Eqs. (28) and (25) is shown in Fig. 2
for simple ρn0 and 8. This comparison depicts the usual ad-
vantage of using Eq. (28) instead of Eq. (25): the former is
always in P(�) and supports of functions change. Iteration
Eq. (28) is the one used in the following numerical experi-
ments.

4 Numerical illustrations

Let us recall that in the data assimilation vocabulary, the
word “analysis” refers to the minimizer of the cost function
at the end of the data assimilation process.

In this section the analyses resulting from the minimiza-
tion of the Wasserstein cost function defined previously in
Eq. (16) are presented, in particular when position errors oc-
cur. Results are compared with the results given by the L2

cost function defined in Eq. (2).
The experiments are all one-dimensional and � is the in-

terval [0,1]. A discretization of � is performed and involves

Nonlin. Processes Geophys., 25, 55–66, 2018 www.nonlin-processes-geophys.net/25/55/2018/



N. Feyeux et al.: Optimal transport for data assimilation 61

200 uniformly distributed discretization points. A first, sim-
ple experiment uses a linear operator G. In a second experi-
ment, the operator is nonlinear.

Only a single variable is controlled. This variable ρ0 repre-
sents the initial condition of an evolution problem. It is an el-
ement of P(�), and observations are also elements of P(�).

In this paper we chose to work in the twin experiments
framework. In this context the true state, denoted ρt

0, is
known and used to generate the observations: ρobs

i = Gi(ρt
0)

at various times (ti)i=1..Nobs . Observations are first perfect,
that is noise-free and available everywhere in space. Then in
Sect. 4.3, we will add noise in the observations. The back-
ground term is supposed to have position errors only and
no amplitude error. The data assimilation process aims to
recover a good estimation of the true state, using the cost
function involving the simulated observations and the back-
ground term. The analysis obtained after convergence can
then be compared to the true state and effectiveness diag-
nostics can be made.

Both the Wasserstein Eq. (17) and L2 Eq. (2) cost func-
tions are minimized through a steepest gradient method. The
L2 gradient is used to minimize the L2 cost function. Both
the L2 and W gradients are used for the Wasserstein cost
functions (cf. Sect. Theorem for expressions of both gradi-
ents), giving respectively, with 8n := grad2JW (ρn0 ), the it-
erations

ρn+1
0 = ρn0 −α

n8n, (29)

ρn+1
0 = (I −αn∇8n)#ρn0 . (30)

The value of αn is chosen close to optimal using a line search
algorithm and the descent stops when the decrement of J
between two iterations is lower than 10−6. Algorithms using
iterations described by Eqs. (29) and (30) will be referred to
as (DG2) and (DG#) respectively.

4.1 Linear example

The first example involves a linear evolution model as
(Gi)i=1..Nobs with the number of observations Nobs equal to
5. Every single operator Gi maps an initial condition ρ0 to
ρ(ti) according to the following continuity equation defined
in �= [0,1]:

∂tρ+ u · ∇ρ = 0withu= 1. (31)

The operator Gi is linear. We control ρ0 only. The true state
ρt

0 ∈ P(�) is a localized mass function, similar to the back-
ground term ρb

0 but located at a different place, as if it had
position errors. The true and background states as well as the
observations at various times are plotted in Fig. 3 (top). The
computed analysis ρa,2

0 for the L2 cost function is shown in
Fig. 3 (bottom left). This Figure also shows the analysis ρa,W

0
corresponding to both (DG2) and (DG#) algorithms mini-
mizing the same Wasserstein JW cost function.

As expected in the introduction, see e.g., Fig. 1, minimiz-
ing J2 leads to an analysis ρa,2

0 being the L2 average of the
background and true states (hence two small localized mass
functions), whileJW leads to a satisfactorily shaped analysis
ρ

a,W
0 in-between the background and true states.
The issue of amplitude of the analysis of ρa,2

0 and the issue
of position of ρa,W

0 are not corrected by the time evolution
of the model, as shown in Fig. 3 (bottom right). At the end
of the assimilation window, each of the analyses still have
discrepancies with the observations.

Both of the algorithms (DG2) and (DG#) give the same
analysis – the minimum of JW . However, the convergence
speed is not the same at all. The values of JW throughout the
algorithm are plotted in Fig. 4. It can be seen that (DG#) con-
verges in a couple of iterations while (DG2) needs more than
2000 iterations to converge. It is a very slow algorithm be-
cause it does not provide the steepest descent associated with
the Wasserstein metric. The Figure also shows that, even in a
conjugate gradient version of (DG2), the descent is still quite
slow (it needs ∼ 100 iterations to converge). This compari-
son highlights the need for a well-suited inner product and
more precisely that the L2 one is not fit for the Wasserstein
distance.

As a conclusion of this first test case, we managed to write
and minimize a cost function which gives a relevant analysis,
contrary to what we obtain with the classical Euclidean cost
function, in the case of position errors. We also noticed that
the success of the minimization ofJW was clearly dependent
on the scalar product choice.

4.2 Nonlinear example

Further results are shown when a nonlinear model is used
in place of G. The framework and procedure are the same
as the first test case (see the beginning of Sect. 4 and 4.1
for details). The nonlinear model used is the shallow-water
system described by{
∂th+ ∂x(hu)= 0

∂tu+ u∂xu+ g∂xh= 0

subject to initial conditions h(0)= h0 and u(0)= u0, with
reflective boundary conditions (u|∂� = 0), where the con-
stant g is the gravity acceleration. The variable h represents
the water surface elevation, and u is the current velocity. If
h0 belongs to P(�), then the corresponding solution h(t) be-
longs to P(�).

The true state is (ht
0,u

t
0), where velocity ut

0 is equal to 0
and surface elevation ht

0 is a given localized mass function.
The initial velocity field is supposed to be known and there-
fore not included in the control vector. Only h0 is controlled,
using Nobs = 5 direct observations of h and a background
term hb

0, which is also a localized mass function like ht
0.

Data assimilation is performed by minimizing either the
J2 or the JW cost functions described above. Thanks to
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At initial time At final time

Figure 3. Top: the twin experiments ingredients are plotted, namely true initial condition ⇢t
0, background term ⇢b

0, and observations at

different times. Bottom left: we plot the analyses obtained after each proposed method, compared to ⇢b
0 and ⇢t

0: ⇢a,2
0 corresponds to J2 while

⇢a,W
0 to both (DG2) and (DG#). Bottom right: fields at final time, ⇢t, ⇢a,2 and ⇢a,W , when taking respectively ⇢t

0, ⇢a,2
0 and ⇢a,W

0 as initial

condition.

Figure 4. Decreasing of JW through the iterations of (DG#) and (DG2), and a conjugate gradient version (CG) of (DG2).

13

(a)

(c)(b)

Figure 3. (a) The twin experiments’ ingredients are plotted, namely true initial condition ρt
0, background term ρb

0 and observations at

different times. (b) We plot the analyses obtained after each proposed method, compared to ρb
0 and ρt

0: ρa,2
0 corresponds to J2 while ρa,W

0
to both (DG2) and (DG#). (c) Fields at final time, ρt, ρa,2 and ρa,W , when taking respectively ρt

0, ρa,2
0 and ρa,W

0 as initial condition.

Figure 4. Decreasing of JW through the iterations of (DG#)
and (DG2), and a conjugate gradient version (CG) of (DG2).

the experience gained during the first experiment, only the
(DG#) algorithm is used for the minimization of JW .

In Fig. 5 (top) we present initial surface elevation ht
0, hb

0
as well as 2 of the 10 observations used for the experiment.
In Fig. 5 (bottom left), the analyses corresponding to J2 and
JW are shown: ha,2

0 and ha,W,#
0 . Analysis ha,2

0 is close to the
L2 average of the true and background states, even at time
t > 0, while ha,W,#

0 lies close to the Wasserstein average be-
tween the background and true states, and hence has the same
shape as them (see Fig. 1).

Figure 5 (bottom right) shows that, at the end of the as-
similation window, the surface elevation ha,W,#

= G(ha,W,#
0 )

is still more realistic than ha,2
= G(ha,2

0 ), when compared to
the true state ht

= G(ht
0).

The conclusion of this second test case is that, even with
nonlinear models, our Wasserstein-based algorithm can give
interesting results in the case of position errors.

4.3 Robustness to observation noise

In this section, a noise in position and shape has been added
in the observations. This type of noise typically occurs in
images from satellites. For example, Fig. 6 (top) shows an
observation from the previous experiment where peaks have
been displaced and resized randomly. For each structure of
each observations, the displacements and amplitude changes
are independent and uncorrelated. This perturbation is done
so that the total mass is preserved.

Analyses of this noisy experiment using L2 Eq. (1) and
Wasserstein Eq. (17) cost functions are compared to analyses
from the last experiment where no noise was present.

For the L2 cost function, surface elevation analyses ha,2
0

are shown in Fig. 6 (bottom left). We see that adding such
a noise in the observations degrades the analysis. In particu-
lar, the right peak (associated with the observations) is more
widely spread: this is a consequence of the fact that the L2

distance is a local-in-space distance.
For the Wasserstein cost function, analyses h

a,W
0 are

shown in Fig. 6 (bottom right). The analysis does not change
much with the presence of noise and remains similar to the
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At initial time At final time

Figure 5. Top: Ingredients of the second experiment: true initial condition ht
0, background hb

0 and 2 of the 10 observations at different times.

Bottom left: the true and background initial conditions are shown, and also the analyses ha,2
0 and ha,W

0 corresponding respectively to the

Euclidean and Wasserstein cost functions. On the right we show the same plots (except the background one) but at the end of the assimilation

window.

Analyses of this noisy experiment using L2 (1) and Wasserstein (17) cost functions are compared to analyses from the last

experiment where no noise was present.

For the L2 cost function, surface elevation analyses ha,2
0 are shown in Fig. 6 (bottom left). We see that adding such a noise

in the observations degrades the analysis. In particular, the right peak (associated to the observations) is more widely spread:

this is a consequence of the fact that the L2 distance is a local-in-space distance.25

For the Wasserstein cost function, analyses ha,W
0 are shown in Fig. 6 (bottom right). The analysis does not change much with

the presence of noise and remains similar to the one obtained in the previous experiment. This is a consequence of a property

of the Wasserstein distance: the Wasserstein barycenter of several Gaussians is a Gaussian with averaged position and variance

(see example 2.2).

15

(a)

(c)(b)

Figure 5. (a) Ingredients of the second experiment: true initial condition ht
0, background hb

0 and 2 of the 10 observations at different times.

(b) The true and background initial conditions are shown and also the analyses ha,2
0 and ha,W

0 corresponding respectively to the Euclidean
and Wasserstein cost functions. On the right we show the same plots (except the background one) but at the end of the assimilation window.

(a)

(c)(b)

Figure 6. (a) Plot of an example of noise-free observations used in the Sect. 4.2 experiment, equal to the true surface elevation ht at a given
time. Plot of the corresponding observations with added noise, as described in Sect. 4.3. (b) Analyses from the L2 cost function using perfect
observations and observations with noise. (c) Likewise with the Wasserstein cost function.
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one obtained in the previous experiment. This is a conse-
quence of a property of the Wasserstein distance: the Wasser-
stein barycenter of several Gaussians is a Gaussian with av-
eraged position and variance (see example Sect. Theorem).

This example shows that the Wasserstein cost function is
more robust than L2 to such noise. This is quite a valuable
feature for realistic applications.

5 Conclusions

We showed through some examples that, if not taken into ac-
count, position errors can lead to unrealistic initial conditions
when using classical variational data assimilation methods.
Indeed, such methods use the Euclidean distance which can
behave poorly under position errors. To tackle this issue, we
proposed instead the use of the Wasserstein distance to define
the related cost function. The associated minimization algo-
rithm was discussed and we showed that using descent itera-
tions following Wasserstein geodesics leads to more consis-
tent results.

On academic examples the corresponding cost function
produces an analysis lying close to the Wasserstein average
between the true and background states, and therefore has
the same shape as them, and is well fit to correct position
errors. This also gives more realistic predictions. This is a
preliminary study and some issues have yet to be addressed
for realistic applications, such as relaxing the constant-mass
and positivity hypotheses and extending the problem to 2-D
applications.

Also, the interesting question of transposing this work into
the filtering community (Kalman filter, EnKF; particle filters;
etc.) raises the issue of writing a probabilistic interpretation
of the Wasserstein cost function, which is out of the scope of
our study for now.

In particular the important theoretical aspect of the repre-
sentation of error statistics still needs to be thoroughly stud-
ied. Indeed classical implementations of variational data as-
similation generally make use of L2 distances weighted by
inverses of error covariance matrices. Analogy with Bayes
formula allows for considering the minimization of the cost
function as a maximum likelihood estimation. Such an anal-
ogy is not straightforward with Wasserstein distances. Some
possible research directions are given in Feyeux (2016) but
this is beyond the scope of this paper. The ability to account
for error statistics would also open the way for a proper use
of the Wasserstein distance in Kalman-based data assimila-
tion techniques.

Data availability. No data sets were used in this article.
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Appendix A: Proof of the Theorem section

To prove the Theorem section, one first needs to differentiate
the Wasserstein distance. The following lemma from (Vil-
lani, 2003, Theorem 8.13 p. 264) gives the gradient of the
Wasserstein distance.

A1 Lemma

Let ρ0,ρ1 ∈ P(�), η ∈ Tρ0P . For small enough ε ∈ R,

1
2
W(ρ0+ εη,ρ1)

2
=

1
2
W(ρ0,ρ1)

2
+ ε〈η,φ〉2+ o(ε), (A1)

with φ(x) being the Kantorovich potential of the transport
between ρ0 and ρ1.

Proof of the Theorem section. Let ρ0 ∈ P(�) and η =

−div(ρ0∇8) ∈ Tρ0P . From the definition of JW in Eq. (16),
from the definition of the tangent model Eq. (23) and in ap-
plication of the above lemma,

lim
ε→0

JW (ρ0+ εη)−JW (ρ0)

ε

=

Nobs∑
i=1
〈Gi[ρ0]η,φ

i
〉2+ωb〈η,φ

b
〉2

=

〈
η,

Nobs∑
i=1

G∗i [ρ0]φ
i
+ωbφ

b

〉
2

=

〈
η,

Nobs∑
i=1

G∗i [ρ0]φ
i
+ωbφ

b
+ c

〉
2

, (A2)

with c such that the integral of the right-hand side term is
zero, so that the right-hand side term belongs to Tρ0P . The
L2 gradient of JW is thus

grad2JW (ρ0)=

Nobs∑
i=1

G∗i [ρ0]φ
i
+ωbφ

b
+ c. (A3)

To get the Wasserstein gradient of JW , the same has to be
done with the Wasserstein product. We let η =−div(ρ∇8)
and g = grad2JW (ρ0) so that Eqs. (A2) and (A3) give

〈η,g〉2 = 〈−div(ρ0∇8),g〉2

=−

∫
�

div(ρ0∇8)g

=

∫
�

ρ0∇8∇g. (A4)

The last equality comes from Stokes’ theorem and from the
fact that8 is of a zero normal derivative at the boundary. The
last term gives the Wasserstein gradient because, if g is with
Neumann boundary conditions, we have∫
�

ρ0∇8∇g = 〈η,−div(ρ0∇g)〉W , (A5)

hence

∀η ∈ Tρ0P, lim
ε→0

JW (ρ0+ εη)−JW (ρ0)

ε

= 〈η,−div(ρ0∇g)〉W . (A6)
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