Articles | Volume 25, issue 1
https://doi.org/10.5194/npg-25-129-2018
https://doi.org/10.5194/npg-25-129-2018
Research article
 | 
01 Mar 2018
Research article |  | 01 Mar 2018

Accelerating assimilation development for new observing systems using EFSO

Guo-Yuan Lien, Daisuke Hotta, Eugenia Kalnay, Takemasa Miyoshi, and Tse-Chun Chen

Related authors

Reduced non-Gaussianity by 30 s rapid update in convective-scale numerical weather prediction
Juan Ruiz, Guo-Yuan Lien, Keiichi Kondo, Shigenori Otsuka, and Takemasa Miyoshi
Nonlin. Processes Geophys., 28, 615–626, https://doi.org/10.5194/npg-28-615-2021,https://doi.org/10.5194/npg-28-615-2021, 2021
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
Nonlin. Processes Geophys., 32, 167–187, https://doi.org/10.5194/npg-32-167-2025,https://doi.org/10.5194/npg-32-167-2025, 2025
Short summary
Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
Nonlin. Processes Geophys., 32, 117–130, https://doi.org/10.5194/npg-32-117-2025,https://doi.org/10.5194/npg-32-117-2025, 2025
Short summary
Bridging Data Assimilation and Control: Ensemble Model Predictive Control for High-Dimensional Nonlinear Systems
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-595,https://doi.org/10.5194/egusphere-2025-595, 2025
Short summary
Evaluation of Effectiveness of Intervention Strategy in Control Simulation Experiment through Comparison with Model Predictive Control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-26,https://doi.org/10.5194/npg-2024-26, 2024
Revised manuscript accepted for NPG
Short summary
Long-window hybrid variational data assimilation methods for chaotic climate models tested with the Lorenz 63 system
Philip David Kennedy, Abhirup Banerjee, Armin Köhl, and Detlef Stammer
EGUsphere, https://doi.org/10.48550/arXiv.2403.03166,https://doi.org/10.48550/arXiv.2403.03166, 2024
Short summary

Cited articles

Bauer, P., Ohring, G., Kummerow, C., and Auligne, T.: Assimilating satellite observations of clouds and precipitation into NWP models, B. Am. Meteor. Soc., 92, ES25–ES28, https://doi.org/10.1175/2011BAMS3182.1, 2011. 
Cardinali, C.: Monitoring the observation impact on the short-range forecast, Q. J. Roy. Meteor. Soc., 135, 239–250, https://doi.org/10.1002/qj.366, 2009. 
Ehrendorfer, M., Errico, R. M., and Raeder, K. D.: Singular-vector perturbation growth in a primitive equation model with moist physics, J. Atmos. Sci., 56, 1627–1648, https://doi.org/10.1175/1520-0469(1999)056>1627:SVPGIA<2.0.CO;21999. 
Errico, R. M., Bauer, P., and Mahfouf, J.-F.: Issues regarding the assimilation of cloud and precipitation data, J. Atmos. Sci., 64, 3785–3798, https://doi.org/10.1175/2006JAS2044.1, 2007. 
Geer, A. J.: Significance of changes in medium-range forecast scores, Tellus A, 68, 30229, https://doi.org/10.3402/tellusa.v68.30229, 2016. 
Download
Short summary
The ensemble forecast sensitivity to observation (EFSO) method can efficiently clarify under what conditions observations are beneficial or detrimental for assimilation. Based on EFSO, an offline assimilation method is proposed to accelerate the development of data selection strategies for new observing systems. The usefulness of this method is demonstrated with the assimilation of global satellite precipitation data.
Share