Articles | Volume 24, issue 4
https://doi.org/10.5194/npg-24-661-2017
https://doi.org/10.5194/npg-24-661-2017
Research article
 | 
20 Oct 2017
Research article |  | 20 Oct 2017

Network-based study of Lagrangian transport and mixing

Kathrin Padberg-Gehle and Christiane Schneide

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary

Cited articles

Allshouse, M. R. and Peacock, T.: Lagrangian based methods for coherent structure detection, Chaos, 25, 097617, https://doi.org/10.1063/1.4922968, 2015.
Allshouse, M. R. and Thiffeault, J.-L.: Detecting coherent structures using braids, Physica D, 241, 95–105, 2012.
Banisch, R. and Koltai, P.: Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets, Chaos, 27, 035804, https://doi.org/10.1063/1.4971788, 2017.
Budišić, M. and Mezić, I.: Geometry of the ergodic quotient reveals coherent structures in flows, Physica D, 241, 1255–1269, 2012.
Dellnitz, M. and Preis, R.: Congestion and Almost Invariant Sets in Dynamical Systems, in: Symbolic and Numerical Scientific Computation (Proceedings of SNSC'01), edited by: Winkler, F., LNCS 2630, Springer, Berlin, Heidelberg, 183–209, 2003.
Download
Short summary
Transport and mixing processes in fluid flows are crucially influenced by coherent structures, such as eddies, gyres, or jets in geophysical flows. We propose a very simple and computationally efficient approach for analyzing coherent behavior in fluid flows. The central object is a flow network constructed directly from particle trajectories. The network's local and spectral properties are shown to give a very good indication of coherent as well as mixing regions in the underlying flow.