Articles | Volume 24, issue 3
https://doi.org/10.5194/npg-24-481-2017
https://doi.org/10.5194/npg-24-481-2017
Research article
 | 
21 Aug 2017
Research article |  | 21 Aug 2017

Fractional Brownian motion, the Matérn process, and stochastic modeling of turbulent dispersion

Jonathan M. Lilly, Adam M. Sykulski, Jeffrey J. Early, and Sofia C. Olhede

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Rain process models and convergence to point processes
Scott Hottovy and Samuel N. Stechmann
EGUsphere, https://doi.org/10.5194/egusphere-2022-865,https://doi.org/10.5194/egusphere-2022-865, 2022
Short summary
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022,https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022,https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Predicting sea surface temperatures with coupled reservoir computers
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022,https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022,https://doi.org/10.5194/npg-29-183-2022, 2022
Short summary

Cited articles

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, D. C., 10th Edn., 1972.
Adler, R. J.: Hausdorff dimension and Gaussian fields, Ann. Probab., 5, 145–151, 1977.
Arató, M., Baran, S., and Ispány, M.: Functionals of complex Ornstein-Uhlenbeck processes, Comput. Math. Appl., 37, 1–13, 1999.
Baillie, R. T.: Long memory processes and fractional integration in econometrics, J. Econometrics, 73, 5–59, 1996.
Barton, R. J. and Poor, H. V.: Signal detection in fractional Gaussian noise, IEEE T. Inform. Theory, 34, 943–959, 1988.
Download
Short summary
This work arose from a desire to understand the nature of particle motions in turbulence. We sought a simple conceptual model that could describe such motions, then realized that this model could be applicable to an array of other problems. The basic idea is to create a string of random numbers, called a stochastic process, that mimics the properties of particle trajectories. This model could be useful in making best use of data from freely drifting instruments tracking the ocean currents.