Articles | Volume 24, issue 3
https://doi.org/10.5194/npg-24-329-2017
https://doi.org/10.5194/npg-24-329-2017
Research article
 | 
03 Jul 2017
Research article |  | 03 Jul 2017

An estimate of the inflation factor and analysis sensitivity in the ensemble Kalman filter

Guocan Wu and Xiaogu Zheng

Related authors

A Study of the Dependence between Soil Moisture and Precipitation in different Ecoregions of the Northern Hemisphere
Shouye Xue and Guocan Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-762,https://doi.org/10.5194/egusphere-2025-762, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
PM2.5 concentrations based on near-surface visibility in the Northern Hemisphere from 1959 to 2022
Hongfei Hao, Kaicun Wang, Guocan Wu, Jianbao Liu, and Jing Li
Earth Syst. Sci. Data, 16, 4051–4076, https://doi.org/10.5194/essd-16-4051-2024,https://doi.org/10.5194/essd-16-4051-2024, 2024
Short summary
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024,https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Assimilating shallow soil moisture observations into land models with a water budget constraint
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020,https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
A global carbon assimilation system using a modified ensemble Kalman filter
S. Zhang, X. Zheng, J. M. Chen, Z. Chen, B. Dan, X. Yi, L. Wang, and G. Wu
Geosci. Model Dev., 8, 805–816, https://doi.org/10.5194/gmd-8-805-2015,https://doi.org/10.5194/gmd-8-805-2015, 2015
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Dynamic-Statistic Combined Ensemble Prediction and Impact Factors on China’s Summer Precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3762,https://doi.org/10.5194/egusphere-2024-3762, 2024
Short summary
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary

Cited articles

Allen, D. M.: The relationship between variable selection and data augmentation and a method for prediction, Technometrics, 16, 125–127, 1974.
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A, 59, 210–224, 2007.
Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear fltering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Burgers, G., Leeuwen, P. J., and Evensen, G.: Analysis scheme in the ensemble kalman filter, Mon. Weather Rev., 126, 1719–1724, 1998.
Download
Short summary
The accuracy of the assimilation results crucially relies on the estimate accuracy of forecast error covariance matrix in data assimilation. Ensemble Kalman filter estimates the forecast error covariance matrix as the sampling covariance matrix of the ensemble forecast states, which need to be further inflated. The experiment results on the Lorenz-96 model show that the analysis error is reduced and the analysis sensitivity to observations is improved using the proposed inflation technique.
Share