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Abstract. The ensemble Kalman filter (EnKF) is a widely
used ensemble-based assimilation method, which estimates
the forecast error covariance matrix using a Monte Carlo
approach that involves an ensemble of short-term forecasts.
While the accuracy of the forecast error covariance matrix
is crucial for achieving accurate forecasts, the estimate given
by the EnKF needs to be improved using inflation techniques.
Otherwise, the sampling covariance matrix of perturbed fore-
cast states will underestimate the true forecast error covari-
ance matrix because of the limited ensemble size and large
model errors, which may eventually result in the divergence
of the filter.

In this study, the forecast error covariance inflation factor
is estimated using a generalized cross-validation technique.
The improved EnKF assimilation scheme is tested on the
atmosphere-like Lorenz-96 model with spatially correlated
observations, and is shown to reduce the analysis error and
increase its sensitivity to the observations.

1 Introduction

For state variables in geophysical research fields, a common
assumption is that systems have “true” underlying states.
Data assimilation is a powerful mechanism for estimating
the true trajectory based on the effective combination of a
dynamic forecast system (such as a numerical model) and
observations (Miller et al., 1994). Data assimilation provides
an analysis state that is usually a better estimate of the state
variable because it considers all of the information provided

by the model forecasts and observations. In fact, the anal-
ysis state can generally be treated as the weighted average
of the model forecasts and observations, while the weights
are approximately proportional to the inverse of the corre-
sponding covariance matrices (Talagrand, 1997). Therefore,
the performance of a data assimilation method relies signifi-
cantly on whether the error covariance matrices are estimated
accurately. If this is the case, the assimilation can be accom-
plished with the rapid development of supercomputers (Re-
ichle, 2008), although finding the appropriate analysis state
is a much difficult problem when the models are nonlinear.

The ensemble Kalman filter (EnKF) is a practical
ensemble-based assimilation scheme that estimates the fore-
cast error covariance matrix using a Monte Carlo method
with the short-term ensemble forecast states (Burgers et al.,
1998; Evensen, 1994). Because of the limited ensemble size
and large model errors, the sampling covariance matrix of
the ensemble forecast states usually underestimates the true
forecast error covariance matrix. This finding indicates that
the filter is over reliant on the model forecasts and excludes
the observations. It can eventually result in the divergence of
the filter (Anderson and Anderson, 1999; Constantinescu et
al., 2007; Wu et al., 2014).

The covariance inflation technique is used to mitigate fil-
ter divergence by inflating the empirical covariance in EnKF,
and it can increase the weight of the observations in the anal-
ysis state (Xu et al., 2013). In reality, this method will perturb
the subspace spanned by the ensemble vectors and better cap-
ture the sub-growing directions that may not have been cap-
tured by the original ensemble (Yang et al., 2015). Therefore,

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



330 G. Wu and X. Zheng: An estimate of the inflation factor and analysis sensitivity

using the inflation technique to enhance the estimate accu-
racy of the forecast error covariance matrix is increasingly
important.

A widely used inflation technique involves multiplying the
forecast error matrix by an inflation factor, which must be
chosen appropriately. In early studies, researchers usually
tuned the inflation factor by repeated assimilation experi-
ments and selected the estimated inflation factor according to
their experience and prior knowledge (Anderson and Ander-
son, 1999). However, such methods are very empirical and
subjective. It is not appropriate to use the same inflation fac-
tor during all the assimilation procedure. Too small or too
large an inflation factor will cause the analysis state to over
rely on the model forecasts or observations, and can seriously
undermine the accuracy and stability of the filter.

In later studies, the inflation factor is estimated on-
line based on the innovation statistic (observation-minus-
forecast; Dee, 1995; Dee and Silva, 1999) with different con-
ditions. Moment estimation can facilitate the calculation by
solving an equation of the innovation statistic and its real-
ization (Li et al., 2009; Miyoshi, 2011; Wang and Bishop,
2003). Maximum likelihood approach can obtain a better
estimate of the inflation factor than moment approach, al-
though it must calculate a high-dimensional matrix determi-
nant (Liang et al., 2012; Zheng, 2009). Bayesian approach
assumes a prior distribution for the inflation factor but is lim-
ited by spatially independent observational errors (Anderson,
2007, 2009). This study seeks to address the estimation of the
inflation factor from the perspective of cross-validation (CV).

The concept of CV was first introduced for linear regres-
sions (Allen, 1974) and spline smoothing (Wahba and Wold,
1975), and it represents a common approach that can be
applied to estimate tuning parameters in generalized addi-
tive models, nonparametric regressions and kernel smooth-
ing (Eubank, 1999; Gentle et al., 2004; Green and Silverman,
1994; Wand and Jones, 1995). Usually, the data are divided
into subsets some of which are used for modeling and anal-
ysis while others for verification and validation. The most
widely used technique removes only one data point and uses
the remainder to estimate the value at this point to test the
estimation accuracy, which is also called the leave-one-out
cross-validation (Gu and Wahba, 1991).

The basic motivation behind CV is to minimize the pre-
diction error at the sampling points. The generalized cross-
validation (GCV) is a modified form of ordinary CV, that
has been found to possess several favorable properties and
is more popular for selecting tuning parameters (Craven and
Wahba, 1979). For instance, Gu and Wahba (1991) applied
the Newton’s method to optimize the GCV score with mul-
tiple smoothing parameters in a smoothing spline model.
Wahba et al. (1995) briefly reviewed the properties of the
GCV and conducted an experiment to choose smoothing
parameters in the context of variational data assimilation
schemes with numerical weather prediction models. Zheng
and Basher (1995) also applied the GCV in a thin-plate

smoothing spline model of spatial climate data to deal with
South Pacific rainfalls.

Actually, the GCV criterion is based on a predictive mean-
square-error criterion that attempts to obtain a best estimate
(Wahba et al., 1995). It has a rotation-invariant property that
is relative to the orthogonal transformation of the observa-
tions and is a consistent estimate of the relative loss (Gu,
2002). For the inverse problems in such fields as meteorolog-
ical data assimilation, GCV method can choose parameters
systematically by minimizing a given objective function that
will improve the assimilation results. It can particularly se-
lect parameters that reflect not only measurement accuracies
from different sources but also model capability (Krakauer et
al., 2004).

This study proposes a new method for choosing the infla-
tion factor using GCV method. The suitability of this choice
is assessed using a statistic known as the analysis sensi-
tivity, which apportions uncertainty in the output to differ-
ent sources of uncertainty in the input (Saltelli et al., 2004,
2008). In the context of statistical data assimilation, this
quantity describes the sensitivity of the analysis to the ob-
servations, which is complementary to the sensitivity of the
analysis to model forecasts (Cardinali et al., 2004; Liu et al.,
2009).

This study focuses on a methodology that can be poten-
tially applied to geophysical applications of data assimilation
in the near future. This paper consists of four sections. The
conventional EnKF scheme is summarized and the improved
EnKF with GCV inflation scheme is proposed in Sect. 2,
the verification and validation processes are conducted on an
idealized model in Sect. 3, the discussions are presented in
Sect. 4 and conclusions are given in Sect. 5.

2 Methodology

2.1 EnKF algorithm

For consistency, a nonlinear discrete-time dynamical forecast
model and linear observation system can be expressed as fol-
lows (Ide et al., 1997):

xt
i =Mi−1

(
xa
i−1
)
+ ηi, (1)

yo
i =Hix

t
i + εi, (2)

where i represents the time index; xt
i =

{
xt
i,1,x

t
i,2, . . .,x

t
i,n

}T

represents the n-dimensional true state vector at the ith time

step; xa
i−1 =

{
xa
i−1,1,x

a
i−1,2, . . .,x

a
i−1,n

}T
represents the n-

dimensional analysis state vector, which is an estimate of
xt
i−1; Mi−1 represents a nonlinear dynamical forecast op-

erator such as a numerical weather prediction model; yo
i ={

yo
i,1,y

o
i,2, . . .,y

o
i,pi

}T
represents a pi-dimensional observa-

tion vector; Hi represents the observation operator matrix;
and ηi and εi represent the forecast and observation error
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vectors, which are assumed to be time uncorrelated, statis-
tically independent of each other and have mean zero and
covariance matrices Pi and Ri , respectively. The EnKF as-
similation result is a series of analysis states xa

i that is an
accurate estimate of the corresponding true states xt

i based
on the information provided by Mi and yo

i .
Suppose the perturbed analysis state at a previous time step

x
a(j)
i−1 has been estimated (1≤ j ≤m and m is the ensemble

size), the detailed EnKF assimilation procedure is summa-
rized as the following forecast step and analysis step (Burg-
ers et al., 1998; Evensen, 1994).

2.1.1 Step 1: forecast step

The perturbed forecast states are generated by running dy-
namical model forward:

x
f(j)
i =Mi−1

(
x

a(j)
i−1

)
. (3)

The forecast state xf
i is defined as the ensemble mean of

x
f(j)
i , and the forecast error covariance matrix is initially es-

timated as the sampling covariance matrix of perturbed fore-
cast states:

Pi =
1

m− 1

m∑
j=1

(
x

f(j)
i − x

f
i

)(
x

f(j)
i − x

f
i

)T
. (4)

2.1.2 Step 2: analysis step

The analysis state is estimated by minimizing the following
cost function:

J (x)=
(
x− xf

i

)T
P−1
i

(
x− xf

i

)
+
(
yo
i −Hix

)TR−1
i

(
yo
i −Hix

)
, (5)

which has the analytic form

xa
i = x

f
i +PiHT

i

(
HiPiHT

i +Ri
)−1

d i, (6)

where

d i = y
o
i −Hix

f
i (7)

is the innovation statistic (observation-minus-forecast resid-
ual in observation space). To complete the ensemble forecast,
the perturbed analysis states are calculated using perturbed
observations (Burgers et al., 1998):

x
a(j)
i = x

f(j)
i +PiHT

i

(
HiPiHT

i +Ri
)−1

(
d i + ε

′(j)
i

)
, (8)

where ε
′(j)
i is a normally distributed random vari-

able with mean zero and covariance matrix Ri . Here,(
HiPiHT

i +Ri
)−1 can be easily calculated using the

Sherman–Morrison–Woodbury formula (Golub and Loan,
1996; Liang et al., 2012; Tippett et al., 2003). Finally, set
i = i+ 1, return to Step 1 for the model forecast at the next
time step and repeat until the model reaches the last time step
N .

2.2 Influence matrix and forecast error inflation

The forecast error inflation procedure should be added to
any ensemble-based assimilation scheme to prevent the filter
from diverging (Anderson and Anderson, 1999; Constanti-
nescu et al., 2007). Multiplicative inflation is one of the com-
monly used inflation techniques, and it adjusts the initially
estimated forecast error covariance matrix Pi to λiPi after
estimating the inflation factors λi properly.

In this study, a new procedure for estimating multiplicative
inflation factors λi is proposed based on the following GCV
function (Craven and Wahba, 1979)

GCVi(λ)=
1
pi
dT
i R−1/2

i

(
Ipi −Ai(λ)

)2R−1/2
i d i[

1
pi

Tr
(
Ipi −Ai(λ)

)]2 , (9)

where Ipi is the identity matrix with dimension pi ×pi ;
R−1/2
i is the square root matrix of Ri ; and

Ai(λ)= Ipi −R1/2
i

(
HiλPiHT

i +Ri
)−1R1/2

i (10)

is the influence matrix (see Appendix A for details).
The inflation factor λi is estimated by minimizing the

GCV (Eq. 9) as an objective function, and it is implemented
between steps 1 and 2 in Sect. 2.1. Then, the perturbed anal-
ysis states are modified to

x
a(j)
i = x

f(j)
i + λiPiH

T
i

(
HiλiPiHT

i +Ri
)−1

(
d i + ε

′(j)
i

)
. (11)

The flowchart of the EnKF equipped with the proposed fore-
cast error inflation based on the GCV method is shown in
Fig. 1.

2.3 Analysis sensitivity

In the EnKF, the analysis state (Eq. 6) is a weighted average
of the observation and forecast. That is

xa
i =Kiy

o
i + (In−KiHi)x

f
i, (12)

where Ki = PiHT
i

(
HiPiHT

i +Ri
)−1 is the Kalman gain ma-

trix and In is the identity matrix with dimension n×n. Then,
the normalized analysis vector can be expressed as follows:

ỹa
i = R−1/2

i HiKiR
1/2
i ỹo

i +R−1/2
i

(
Ipi −HiKi

)
R1/2
i ỹf

i, (13)

where ỹf
i = R−1/2

i Hix
f
i is the normalized projection of the

forecast on the observation space. The sensitivities of the
analysis to the observation and forecast are defined by
Eqs. (14) and (15), respectively:

So
i =

∂ỹa
i

∂ỹo
i

= R1/2
i KT

i HT
i R−1/2

i , (14)

Sf
i =

∂ỹa
i
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i

= R1/2
i

(
Ipi −KT

i HT
i

)
R−1/2
i , (15)

which satisfy So
i +Sf

i = Ipi .
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Figure 1. Flowchart of the proposed assimilation scheme.

The elements of the matrix So
i reflect the sensitivity of the

normalized analysis state to the normalized observations; its
diagonal elements are the analysis self-sensitivities and the
off-diagonal elements are the cross-sensitivities. On the other
hand, the elements of the matrix Sf

i reflect the sensitivity of
the normalized analysis state to the normalized forecast state.
The two quantities are complementary, and the GCV func-
tion can be interpreted as minimizing the normalized fore-
cast sensitivity because the inflation scheme will increase the
observation weight appropriately.

In fact, the sensitivity matrix So
i is equal to the influence

matrix Ai (see Appendix B for detailed proof), whose trace
can be used to measure the “equivalent number of parame-
ters” or “degrees of freedom for the signal” (Gu, 2002; Pena
and Yohai, 1991). Similarly, the sensitivity matrix So

i can be
interpreted as a measurement of the amount of information
extracted from the observations (Ellison et al., 2009). Trace
diagnostics can be used to analyze the sensitivities to obser-
vations or forecast vectors (Cardinali et al., 2004). The global
average influence (GAI) at the ith time step is defined as the
globally averaged observation influence:

GAI=
Tr(So

i )

pi
, (16)

where pi is the total number of observations at the ith time
step.

In the conventional EnKF, the forecast error covariance
matrix Pi is initially estimated using a Monte Carlo method
with short-term ensemble forecast states. However, because
of the limited ensemble size and large model errors, the sam-
pling covariance matrix of perturbed forecast states usually
underestimate the true forecast error covariance matrix. This
will cause the analysis to over rely on the forecast state and
exclude useful information from the observations. This is
captured by the fact that the GAI values are rather small
for the conventional EnKF scheme. Adjusting the inflation of
the forecast error covariance matrix alleviates this problem to
some extent, as will be shown in the following simulations.

2.4 Forecast ensemble spread and analysis RMSE

The spread of the forecast ensemble at the ith step is defined
as follows:

Spread=

√√√√ 1
n(m− 1)

m∑
j=1

∥∥∥xf(j)
i − x

f
i

∥∥∥2
. (17)

Roughly speaking, the forecast ensemble spread is usually
underestimated for the conventional EnKF, which also dra-
matically decreases until the observations ultimately have an

Nonlin. Processes Geophys., 24, 329–341, 2017 www.nonlin-processes-geophys.net/24/329/2017/



G. Wu and X. Zheng: An estimate of the inflation factor and analysis sensitivity 333

irrelevant impact on the analysis states. The inflation tech-
nique can effectively compensate for the underestimation of
the forecast ensemble spread, and thereby can improve the
assimilation results.

In the following experiments, the “true” state xt
i is non-

dimensional and can be obtained by a numerical solution of
partial differential equations. In this case, the distance of the
analysis state to the true state can be defined as the analysis
root mean square error (RMSE), which is used to evaluate
the accuracy of the assimilation results. The RMSE at the ith
time step is defined as follows:

RMSE=

√√√√1
n

n∑
k=1

(
xa
i,k − xt

i,k

)2
. (18)

where xa
i,k and xt

i,k are the kth components of the analy-
sis state and true state at the ith time step. In principle, a
smaller RMSE indicates a better performance of the assimi-
lation scheme.

3 Numerical experiments

The proposed data assimilation scheme was tested using the
Lorenz-96 model (Lorenz, 1996) with model errors and a lin-
ear observation system as a test bed. The performances of the
assimilation schemes described in Sect. 2 were evaluated via
the following experiments.

3.1 Dynamical forecast model and observation systems

The Lorenz-96 model (Lorenz, 1996) is a quadratic nonlin-
ear dynamical system that has properties relevant to realistic
forecast problems and is governed by the equation

dXk
dt
= (Xk+1−Xk−2)Xk−1−Xk +F, (19)

where k = 1,2, . . .,40. The cyclic boundary conditions
X−1 = XK−1, X0 = XK and XK+1 = X1 were applied to
ensure that Eq. (19) is well defined for all values of k.
The Lorenz-96 model is “atmosphere-like” because the three
terms on the right-hand side of Eq. (19) are analogous to a
nonlinear advection-like term, a damping term, and an exter-
nal forcing term, respectively. The model can be considered
representative of an atmospheric quantity (e.g., zonal wind
speed) distributed on a latitude circle. Therefore, the Lorenz-
96 model has been widely used as a test bed to evaluate the
performance of assimilation schemes in many studies (Wu et
al., 2013).

The true state is derived by a fourth-order Runge–Kutta
time integration scheme (Butcher, 2003). The time step
for generating the numerical solution was set at 0.05 non-
dimensional units, which is roughly equivalent to 6 h in real
time, assuming that the characteristic timescale of the dis-
sipation in the atmosphere is 5 days (Lorenz, 1996). The

forcing term was set as F = 8 so that the leading Lyapunov
exponent implies an error-doubling time of approximately 8
time steps and the fractal dimension of the attractor was 27.1
(Lorenz and Emanuel, 1998). The initial value was chosen to
be Xk = F when k 6= 20 and X20 = 1.001F .

In this study, the synthetic observations were assumed to
be generated by adding random noises that were multivari-
ate normally distributed with mean zero and covariance ma-
trix Ri to the true states. The frequency was every 4 time
steps, which can be used to mimic daily observations in prac-
tical problems, such as satellite data. The observation errors
were assumed to be spatially correlated, which is common
in applications involving remote sensing and radiance data.
The variance of the observation at each grid point was set to
σ 2

o = 1, and the covariance of the observations between the
j th and kth grid points was as follows:

Ri (j,k)= σ 2
o × 0.5min{|j−k|,40−|j−k|}. (20)

3.2 Assimilation scheme comparison

Because model errors are inevitable in practical dynamical
forecast models, it is reasonable to add model errors to the
Lorenz-96 model in the assimilation process. The Lorenz-96
model is a forced dissipative model with a parameter F that
controls the strength of the forcing. Modifying the forcing
strength F changes the model forecast states considerably.
For values of F that are larger than 3, the system is chaotic
(Lorenz and Emanuel, 1998). To simulate model errors, the
forcing term for the forecast was set to 7, while using F = 8
to generate the “true” state. The initially selected ensemble
size was 30.

The Lorenz-96 model was run for 2000 time steps, which
is equivalent to approximately 500 days in realistic problems.
The synthetic observations were assimilated at every grid
point and every 4 time steps using the conventional EnKF,
the constant inflated EnKF and the improved EnKF schemes
for comparisons. The time series of estimated inflation fac-
tors are shown in Fig. 2. It can be seen that the estimated
inflation factors vary between 1 and 6 in most instances, al-
though the values smaller than 1 are estimated in several as-
similation time steps. The median of the estimated inflation
factors was 1.88, which was used as the inflation factor in
the constant inflated EnKF scheme. Since the median is a ro-
bust and highly efficient statistic of the central tendency, this
can ensure a relative fair comparison between the constant
inflated EnKF and the improved EnKF schemes.

The forecast ensemble spread of the conventional EnKF,
constant inflated EnKF and improved EnKF are plotted in
Fig. 3. For the conventional EnKF, because the forecast states
usually shrink together, the forecast ensemble spread was
quite small and had a mean value of 0.36. The mean spread
value of the improved EnKF was 3.32, which was larger than
that of the constant inflated EnKF (3.25). These findings il-
lustrate that the underestimation of forecast ensemble spread
can be effectively compensated for by the two EnKF schemes
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Figure 2. Time series of the estimated inflation factors by minimiz-
ing the GCV function. The median of the estimated inflation factors
is 1.88.
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Figure 3. Forecast ensemble spread of the conventional EnKF
(black line), the constant inflated EnKF (red line) and the improved
EnKF (blue line) for the Lorenz-96 experiment with 40-observation
and 30-ensemble member. The constant multiplicative inflation fac-
tor is set as 1.88.

with forecast error inflation and that the improved EnKF is
more effective than the constant inflated EnKF.

To evaluate the analysis sensitivity, the GAI statistics
(Eq. 16) were calculated, and the results are plotted in Fig. 4.
The GAI value increases from 10 % for the conventional
EnKF to 30 % for the improved EnKF, indicating that the
latter relies more on the observations. This finding is impor-
tant because the observations can play a significant role in
combining the results with the model forecasts to generate
the analysis state. In addition to small fluctuations, the mean
GAI value of the constant inflated EnKF was 27.80 %, which
was smaller than that of the improved EnKF.
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Figure 4. GAI statistics of the conventional EnKF (black line), the
constant inflated EnKF (red line) and the improved EnKF (blue line)
for the Lorenz-96 experiment with 40-observation and 30-ensemble
member. The constant multiplicative inflation factor is set as 1.88.

To evaluate the analysis estimate accuracy, the analysis
RMSE (Eq. 18) and the corresponding values of the GCV
functions (Eq. 9) were calculated and plotted in Figs. 5 and
6, respectively. The results illustrate that the analysis RMSE
and the values of the GCV functions decrease sharply for the
two EnKF with forecast error inflation schemes. However,
the GCV function and the RMSE values of the improved
EnKF were about 15 % smaller than those of the constant
inflated EnKF, indicating that the online estimate method
performs better than the simple multiplicative inflation tech-
niques with a constant value. The correlation coefficient of
the analysis RMSE and the value of the GCV function at the
assimilation time step were approximately 0.76, which indi-
cates that the GCV function is a good criterion to estimate
the inflation factor.

The ensemble analysis state members of the conven-
tional EnKF, constant inflated EnKF and improved EnKF are
shown in Fig. 7, and the results indicate the uncertainty of
the analysis state to some extent. The true trajectory obtained
by the numerical solution is also plotted. It illustrates that a
larger difference occurred between the true trajectory and the
ensemble analysis state members for the conventional EnKF
than for the improved EnKF and constant inflated EnKF. In
addition, the analysis state was more consistent with the true
trajectory for the improved EnKF than that for the constant
inflated EnKF. Therefore, the GCV inflation can lead to a
more accurate analysis state than the simple constant infla-
tion.

The time-mean values of the forecast ensemble spread, the
GAI statistics, the GCV functions and the analysis RMSE
over 2000 time steps are listed in Table 1. These results illus-
trate that the forecast error inflation technique using the GCV
function performs better than the constant inflated EnKF,
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Figure 5. Analysis RMSE of the conventional EnKF (black line),
the constant inflated EnKF (red line) and the improved EnKF (blue
line) for the Lorenz-96 experiment with 40-observation and 30-
ensemble member. The constant multiplicative inflation factor is set
as 1.88.
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Figure 6. GCV function values of the conventional EnKF (black
line), the constant inflated EnKF (red line) and the improved EnKF
(blue line) for the Lorenz-96 experiment with 40-observation and
30-ensemble member. The constant multiplicative inflation factor is
set as 1.88.

which can indeed increase the analysis sensitivity to the ob-
servations and reduce the analysis RMSE.

3.3 Influence of ensemble size and observation number

Intuitively, for any ensemble-based assimilation scheme, a
large ensemble size will lead to small analysis errors; how-
ever, the computational costs are high for practical problems.
The ensemble size in the practical land surface assimilation
problem is usually several tens of members (Kirchgessner et
al., 2014). The preferences of the proposed inflation method
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Figure 7. Ensemble analysis state members of the conventional
EnKF (black line), the constant inflated EnKF (red line) and the
improved EnKF (blue line) for the Lorenz-96 experiment with 40-
observation and 30-ensemble member. The constant multiplicative
inflation factor is set as 1.88. The green line refers to the true trajec-
tory obtained by the numerical solution.

and the constant inflation method with respect to different
ensemble sizes (10, 30 and 50) were evaluated, and the re-
sults are listed in Table 1. It shows that for each scheme, us-
ing a 10-member ensemble produced a 3-fold increase in the
analysis RMSE, while using a 50-member ensemble reduced
the analysis RMSE by 20 % relative to the analysis RMSE
obtained using a 30-member ensemble. The forecast ensem-
ble spread increased slightly from a 10-member ensemble
to a 50-member ensemble. The GAI and GCV function val-
ues changed sharply from a 10-member ensemble to a 30-
member ensemble, and they became relatively stable from a
30-member ensemble to a 50-member ensemble. Ensembles
less than 10 were unstable, and no significant changes oc-
curred for ensembles greater than 50. Considering the com-
putational costs for practical problems, a 30-member ensem-
ble may be necessary for Lorenz-96 model to estimate sta-
tistically robust results. In the realistic problem, a system in
which the errors grow in multiple directions will need more
ensembles to produce statistically robust results.
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Table 1. Time-mean values of the forecast ensemble spread, GAI statistics, GCV functions and analysis RMSE over 2000 time steps, as well
as the running times (second) for different assimilation schemes. The observation number is 40 and the ensemble size is selected as 10, 30
and 50, respectively.

Scheme Ensemble Spread GAI GCV RMSE Running
size time

Conventional 10 0.23 4.56 % 36.38 4.50 70.73
EnKF 30 0.36 10.78 % 31.14 4.01 215.92

50 0.41 13.58 % 25.21 3.52 346.69

Constant 10 3.15 4.78 % 35.91 4.38 77.41
inflated 30 3.25 27.48 % 5.56 1.41 238.25
EnKF 50 3.27 19.67 % 5.03 1.14 384.63

Improved 10 3.26 5.24 % 35.56 3.74 81.31
EnKF 30 3.32 29.21 % 3.29 1.10 251.06

50 3.45 35.63 % 2.30 0.88 405.68

To evaluate the preferences of the inflation method with
respect to different numbers of observations, synthetic ob-
servations were generated at every other grid point and for
every 4 time steps. Hence, a total of 20 observations were
performed at each observation step in this case. The assimi-
lation results with ensemble sizes of 10, 30 and 50 are listed
in Table 2, which shows that the GAI values were larger than
those with 40-observations in all assimilation schemes. This
finding may be related to the relatively small denominator
of the GAI statistic (Eq. 16) in the 20-observation experi-
ments. The forecast ensemble spread does not change much
but the GCV function and the RMSE values increase greatly
in the 20-observation experiments with respect to those in
the 40-observation experiments, which illustrates that more
observations will lead to less analysis error.

4 Discussions

4.1 Performance of the GCV inflation

Accurate estimates of the forecast error covariance matrix
are crucial to the success of any data assimilation scheme.
In the conventional EnKF assimilation scheme, the forecast
error covariance matrix is estimated as the sampling covari-
ance matrix of the ensemble forecast states. However, limited
ensemble size and large model errors often cause the matrix
to be underestimated, which produces an analysis state that
over relies on the forecast and excludes observations. This
can eventually cause the filter to diverge. Therefore, the fore-
cast error inflation with proper inflation factors is increas-
ingly important.

The use of multiplicative covariance inflation techniques
can mitigate this problem to some extent. Several methods
have been proposed in the literature, and each has different
assumptions. For instance, the moment approach can be eas-
ily conducted based on the moment estimation of the innova-
tion statistic. The maximum likelihood approach can obtain a

more accurate inflation factor than the moment approach, but
requires computing high-dimensional matrix determinants.
The Bayesian approach assumes a prior distribution for the
inflation factor but is limited to spatially independent obser-
vational errors. In this study, the inflation factor was esti-
mated based on cross-validation and the analysis sensitivity
was detected. The estimated inflation factor by minimizing
the GCV function is not affected by the observation unit and
can optimize the analysis sensitivity to the observation.

In fact, the GCV method can evaluate and compare
learning algorithms and represents a widely used statistical
method. It can be applied in inverse problems in such fields
as meteorological data assimilation (Wahba et al., 1995).
Specifically, GCV provides a well-characterized method,
which can select a regularization parameter by minimizing
the predictive data errors with rotation-invariant in a least-
squares solution (MacCarthy et al., 2011). In data assimi-
lation research fields, observation data such as in situ ob-
servation and remote sensing data are usually from differ-
ent sources. GCV is particularly useful for choosing rela-
tive parameters that reflect not only measurement accuracies
from different sources but also model capability (Krakauer
et al., 2004). Apparently, GCV method requires calculating
the trace of a large matrix, which may be commonly compu-
tationally prohibitive for large inverse problems (MacCarthy
et al., 2011).

In this study, the GCV concept was adopted for the in-
flation factor estimation in the improved EnKF assimilation
scheme and was validated with the Lorenz-96 model. The
assimilation results showed that inflating the conventional
EnKF using the factor estimated by minimizing the GCV
function can indeed reduce the analysis RMSE. Therefore,
the GCV function can accurately quantify the goodness of fit
of the error covariance matrix. The values of the GCV func-
tion obviously decreased in the proposed approach compared
the conventional EnKF and constant inflated EnKF schemes.
The analysis RMSE of the proposed approach was also much

Nonlin. Processes Geophys., 24, 329–341, 2017 www.nonlin-processes-geophys.net/24/329/2017/



G. Wu and X. Zheng: An estimate of the inflation factor and analysis sensitivity 337

Table 2. Same as in Table 1 but for 20 observations.

Scheme Ensemble Spread GAI GCV RMSE Running
size time

Conventional 10 0.41 10.77 % 33.64 4.85 67.75
EnKF 30 0.59 20.92 % 22.89 4.10 181.27

50 0.68 26.41 % 14.97 3.29 295.92

Constant 10 3.03 11.73 % 33.39 4.64 71.22
inflated 30 3.18 30.07 % 17.12 3.92 203.64
EnKF 50 3.27 39.51 % 12.74 3.37 322.29

Improved 10 3.33 13.25 % 32.17 4.39 74.84
EnKF 30 3.36 35.09 % 14.99 3.46 213.81

50 3.48 41.28 % 5.19 2.86 339.41

smaller than those of the conventional EnKF and constant in-
flated EnKF schemes, which suggests that the GCV criterion
works well for estimating the inflation factor.

The analysis sensitivities in the proposed approach and in
the conventional EnKF scheme were also investigated in this
study. The time-averaged GAI statistic increases from about
10 % in the conventional EnKF scheme to about 30 % us-
ing the proposed inflation method. This illustrates that the
inflation mitigates the problem of the analysis depending ex-
cessively on the forecast and excluding the observations. The
relationship of the analysis state to the forecast state and the
observations are more reasonable.

4.2 Computational cost

The highest computational cost when minimizing the GCV
function is related to calculating the influence matrix Ai(λ).
Since the matrix multiplication is commutative for the trace,
the GCV function can be easily re-expressed as follows:

GCVi(λ)=
pid

T
i

(
HiλPiHT

i +Ri
)−1Ri

(
HiλPiHT

i +Ri
)−1

d i[
Tr
((

HiλPiHT
i +Ri

)−1Ri
)]2 . (21)

Because both the numerator and denominator of the GCV
function are scalars, the inverse matrix is needed only
in
(
HiλPiHT

i +Ri
)−1, which can be effectively calculated

using the Sherman–Morrison–Woodbury formula. Further-
more, the inverse matrix calculation and the multiplication
process are also indispensable for the conventional EnKF
(Eq. 6). Essentially, no additional computational burden is
associated with the improved EnKF for the inverse matrix.
Therefore, the total computational costs of the improved
EnKF are feasible.

For the Lorenz-96 experiments in this study, the conven-
tional EnKF, constant inflated EnKF and proposed improved
EnKF assimilation schemes were conducted using R lan-
guage on a computer with Intel Core i5 CPU and 8 GB RAM.
The running times with different observation numbers and
ensemble sizes were listed in Tables 1 and 2. It shows that for

each assimilation scheme, the computational cost increases
as the ensemble size grows. For the fixed observation num-
ber and ensemble size, the conventional EnKF, which does
not involve the forecast error inflation, has the least run-
ning time but at a cost of losing assimilation accuracy. The
proposed EnKF scheme is about 15 % smaller in analysis
RMSE, but only about 5 % longer in running time than the
constant inflated EnKF scheme. For the operational meteoro-
logical/ocean models, the most computational cost is in the
ensemble model integrations (Ravazzani et al., 2016). There-
fore, the proposed EnKF scheme does not significantly in-
crease computational cost.

4.3 Notes

It is worth noting that the inflation factor is assumed to be
constant in space in this study, which may be not the case
in realistic assimilation problems. Forcing all components of
the state vector to use the same inflation factor could sys-
tematically overinflate the ensemble variances in sparsely ob-
served areas, especially when the observations are unevenly
distributed. In the presence of sparse observations, the state
that is not observed can be improved only by the physical
mechanism of the forecast model, although this improvement
is limited. Therefore, a multiplicative inflation may not be
sufficiently effective to enhance the assimilation accuracy. In
this case, the additive inflation and the localization technique
can be applied to further improve the assimilation quality
in the presence of sparse observations (Miyoshi and Kunii,
2011; Yang et al., 2015).

5 Conclusions

In this study, the approach for using GCV as a metric to es-
timate the covariance inflation factor was proposed. In the
case studies conducted in Sect. 3, the observations were rela-
tively evenly distributed and the assimilation accuracy could
indeed be improved by the forecast error inflation technique.
These findings provide insights on the methodology and val-
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idation of the Lorenz-96 model and illustrate the feasibility
of our approach. In the near future, methods of modifying
the adaptive procedure to suit the system with unevenly dis-
tributed observations and applying to more sophisticated dy-
namic and observation systems will be investigated.

Data availability. No data sets were used in this article.
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Appendix A

From Eq. (2), the normalized observation equation can be
defined as follows:

ỹo
i = R−1/2

i Hix
t
i + ε̃i, (A1)

where ỹo
i = R−1/2

i yo
i is the normalized observation vector

and ε̃i ∼N(0,I); Ipi is the identity matrix with the dimen-
sions pi ×pi . Similarly, the normalized analysis vector is
ỹa
i = R−1/2

i Hix
a
i and the influence matrix Ai relates the nor-

malized observation vector to the normalized analysis vector,
thereby ignoring the normalized forecast state in the obser-
vation space (Gu, 2002):

ỹa
i −R−1/2

i Hix
f
i = Ai

(
ỹo
i −R−1/2

i Hix
f
i

)
. (A2)

Because the analysis state xa
i is given by Eq. (5), the influ-

ence matrix Ai can be verified as follows:

Ai = Ipi −R1/2
i

(
HiPiHT

i +Ri
)−1R1/2

i . (A3)

If the initial forecast error covariance matrix is inflated as
described in Sect. 2.2, then the influence matrix is treated as
the following function of λ

Ai(λ)= Ipi −R1/2
i

(
HiλPiHT

i +Ri
)−1R1/2

i , (A4)

The principle of CV is to minimize the estimated error at the
observation grid point. Lacking an independent validation
data set, a common alternative strategy is to minimize the
squared distance between the normalized observation value
and the analysis value while not using the observation on the
same grid point, which is the following objective function:

Vi(λ)=
1
pi

pi∑
k=1

(
ỹo
i,k −

(
R−1/2
i Hix

a[k]
i

)
k

)2
, (A5)

where xa[k]
i is the minima of the following “delete-one” ob-

jective function:(
x− xf

i

)T
(λPi)−1

(
x− xf

i

)
+
(
yo
i −Hix

)T
−k

R−1/2
i,−k

(
yo
i −Hix

)
−k
. (A6)

The subscript −k indicates a vector (matrix) with its kth el-
ement (kth row and column) deleted. Instead of minimizing
Eq. (A6) pi times, the objective function (Eq. A5) has an-
other more simple expression (Gu, 2002):

Vi(λ)=
1
pi

pi∑
k=1

(
ỹo
i,k −

(
R−1/2
i Hix

a
i

)
k

)2

(
1− ak,k

)2 , (A7)

where ak,k is the element at the site pair (k, k) of the influ-
ence matrix Ai(λ). Then, ak,k is substituted with the average
1
pi

pi∑
k=1

ak,k =
1
pi

Tr(Ai(λ)) and the constant is ignored to ob-

tain the following GCV statistic (Gu, 2002):

GCVi(λ)=
1
pi
dT
i R−1/2

i

(
Ipi −Ai(λ)

)2R−1/2
i d i[

1
pi

Tr
(
Ipi −Ai(λ)

)]2 . (A8)

Appendix B

The sensitivities of the analysis to the observation are defined
as follows:

So
i =

∂ỹa
i

∂ỹo
i

= R1/2
i KT

i HT
i R−1/2

i , (B1)

Substitute the Kalman gain matrix Ki =

PiHT
i

(
HiPiHT

i +Ri
)−1 into So

i , then:

So
i = R1/2

i KT
i HT

i R−1/2
i

= R1/2
i

(
HiPiHT

i +Ri
)−1HiPiHT

i R−1/2
i

= R1/2
i

(
HiPiHT

i +Ri
)−1 (HiPiHT

i +Ri −Ri
)

R−1/2
i

= R1/2
i

(
HiPiHT

i +Ri
)−1 (HiPiHT

i +Ri
)

R−1/2
i

−R1/2
i

(
HiPiHT

i +Ri
)−1RiR

−1/2
i

= Ipi −R1/2
i

(
HiλPiHT

i +Ri
)−1R1/2

i

= Ai . (B2)

Therefore, the sensitivity matrix So
i is equal to the influence

matrix Ai .

www.nonlin-processes-geophys.net/24/329/2017/ Nonlin. Processes Geophys., 24, 329–341, 2017



340 G. Wu and X. Zheng: An estimate of the inflation factor and analysis sensitivity

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work is supported by the National Natu-
ral Science Foundation of China (grant no. 91647202), the National
Basic Research Program of China (grant no. 2015CB953703), the
National Natural Science Foundation of China (grant no. 41405098)
and the Fundamental Research Funds for the Central Universi-
ties. The authors would like to gratefully acknowledge the two
anonymous reviewers and the editor for their constructive com-
ments, which helped significantly in improving the quality of this
manuscript.

Edited by: Amit Apte
Reviewed by: two anonymous referees

References

Allen, D. M.: The relationship between variable selection and data
augmentation and a method for prediction, Technometrics, 16,
125–127, 1974.

Anderson, J. L.: An adaptive covariance inflation error correction
algorithm for ensemble filters, Tellus A, 59, 210–224, 2007.

Anderson, J. L.: Spatially and temporally varying adaptive covari-
ance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementa-
tion of the nonlinear fltering problem to produce ensemble as-
similations and forecasts, Mon. Weather Rev., 127, 2741–2758,
1999.

Burgers, G., Leeuwen, P. J., and Evensen, G.: Analysis scheme in
the ensemble kalman filter, Mon. Weather Rev., 126, 1719–1724,
1998.

Butcher, J. C.: Numerical methods for ordinary differential equa-
tions, John Wiley & Sons, Chichester, 425 pp., 2003.

Cardinali, C., Pezzulli, S., and Andersson, E.: Influence – matrix
diagnostic of a data assimilation system, Q. J. Roy. Meteor. Soc.,
130, 2767–2786, 2004.

Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.:
Ensemble-based chemical data assimilation I: general approach,
Q. J. Roy. Meteor. Soc., 133, 1229–1243, 2007.

Craven, P. and Wahba, G.: Smoothing noisy data with spline func-
tions, Numer. Math., 31, 377–403, 1979.

Dee, D. P.: On-line estimation of error covariance parameters for
atmospheric data assimilation, Mon. Weather Rev., 123, 1128–
1145, 1995.

Dee, D. P. and Silva, A. M.: Maximum-likelihood estimation of
forecast and observation error covariance parameters part I:
methodology, Mon. Weather Rev., 127, 1822–1834, 1999.

Ellison, C. J., Mahoney, J. R., and Crutchfield, J. P.: Prediction,
Retrodiction, and the Amount of Information Stored in the
Present, J. Stat. Phys., 136, 1005–1034, 2009.

Eubank, R. L.: Nonparametric regression and spline smoothing,
Marcel Dekker, Inc., New York, 338 pp., 1999.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res., 99, 10143–10162, 1994.

Gentle, J. E., Hardle, W., and Mori, Y.: Handbook of computa-
tional statistics: concepts and methods, Springer, Berlin, 1070
pp., 2004.

Golub, G. H. and Loan, C. F. V.: Matrix Computations, The Johns
Hopkins University Press: Baltimore, 1996.

Green, P. J. and Silverman, B. W.: Nonparametric Regression
and Generalized Linear Models: A roughness penalty approach,
Vol. 182, Chapman and Hall, London, 1994.

Gu, C.: Smoothing Spline ANOVA Models, Springer-Verlag, New
York, 289 pp., 2002.

Gu, C. and Wahba, G.: Minimizing GCV/GML scores with multiple
smoothing parameters via the Newton method, SIAM Journal on
Scientific and Statistical Computation, 12, 383–398, 1991.

Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C.: Unified nota-
tion for data assimilation operational sequential and variational,
J. Meteorol. Soc. Jpn., 75, 181–189, 1997.

Kirchgessner, P., Berger, L., and Gerstner, A. B.: On the choice of an
optimal localization radius in ensemble Kalman filter methods,
Mon. Weather Rev., 142, 2165–2175, 2014.

Krakauer, N. Y., Schneider, T., Randerson, J. T., and Olsen, S.
C.: Using generalized cross-validation to select parameters in
inversions for regional carbon fluxes, Geophys. Res. Lett., 31,
L19108, https://doi.org/10.1029/2004GL020323, 2004.

Li, H., Kalnay, E., and Miyoshi, T.: Simultaneous estimation of
covariance inflatioin and observation errors within an ensemble
Kalman filter, Q. J. Roy. Meteor. Soc., 135, 523–533, 2009.

Liang, X., Zheng, X., Zhang, S., Wu, G., Dai, Y., and Li, Y.: Max-
imum Likelihood Estimation of Inflation Factors on Error Co-
variance Matrices for Ensemble Kalman Filter Assimilation, Q.
J. Roy. Meteor. Soc., 138, 263–273, 2012.

Liu, J., Kalnay, E., Miyoshi, T., and Cardinali, C.: Analysis sensitiv-
ity calculation in an ensemble Kalman filter, Q. J. Roy. Meteor.
Soc., 135, 1842–1851, 2009.

Lorenz, E. N.: Predictability – a problem partly solved, Seminar on
Predictability, ECMWF: Reading, UK, 1996.

Lorenz, E. N. and Emanuel, K. A.: Optimal sites for supplementary
weather observations simulation with a small model, J. Atmos.
Sci., 55, 399–414, 1998.

MacCarthy, J. K., Borchers, B., and Aster, R. C.: Efficient
stochastic estimation of the model resolution matrix di-
agonal and generalized cross–validation for large geophys-
ical inverse problems, J. Geophys. Res., 116, B10304,
https://doi.org/10.1029/2011JB008234, 2011.

Miller, R. N., Ghil, M., and Gauthiez, F.: Advanced data assimila-
tion in strongly nonlinear dynamical systems, J. Atmos. Sci., 51,
1037–1056, 1994.

Miyoshi, T.: The Gaussian approach to adaptive covariance infla-
tion and its implementation with the local ensemble transform
Kalman filter, Mon. Weather Rev., 139, 1519–1534, 2011.

Miyoshi, T. and Kunii, M.: The Local Ensemble Transform Kalman
Filter with the Weather Research and Forecasting Model: Exper-
iments with Real Observations, Pure Appl. Geophys., 169, 321–
333, 2011.

Pena, D. and Yohai, V. J.: The detection of influential subsets in
linear regression using an influence matrix, J. Roy. Stat. Soc., 57,
145–156, 1991.

Ravazzani, G., Amengual, A., Ceppi, A., Homar, V., Romero, R.,
Lombardi, G., and Mancini, M.: Potentialities of ensemble strate-

Nonlin. Processes Geophys., 24, 329–341, 2017 www.nonlin-processes-geophys.net/24/329/2017/

https://doi.org/10.1029/2004GL020323
https://doi.org/10.1029/2011JB008234


G. Wu and X. Zheng: An estimate of the inflation factor and analysis sensitivity 341

gies for flood forecasting over the Milano urban area, J. Hydrol.,
539, 237–253, 2016.

Reichle, R. H.: Data assimilation methods in the Earth sciences,
Adv. Water Resour., 31, 1411–1418, 2008.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitiv-
ity Analysis in Practice: A Guide to Assessing Scientific Models,
John Wiley & Sons, Chichester, 219 pp., 2004.

Saltelli, A., Ratto, A. M., Anders, T., Campolongo, F., Cariboni,
J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity
Analysis: The Primer. John Wiley & Sons, Ispra, 292 pp., 2008.

Talagrand, O.: Assimilation of Observations, an Introduction, J.
Meteorol. Soc. Jpn., 75, 191–209, 1997.

Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and
Whitaker, J. S.: Notes and correspondence ensemble square root
filter, Mon. Weather Rev., 131, 1485–1490, 2003.

Wahba, G. and Wold, S.: A completely automatic french curve,
Commun. Stat., 4, 1–17, 1975.

Wahba, G., Johnson, D. R., Gao, F., and Gong, J.: Adaptive tun-
ing of numerical weather prediction models randomized GCV
in three- and four-dimensional data assimilation, Mon. Weather
Rev., 123, 3358–3369, 1995.

Wand, M. P. and Jones, M. C.: Kernel Smoothing, Chapman and
Hall, Maryland, 212 pp., 1995.

Wang, X. and Bishop, C. H.: A comparison of breeding and ensem-
ble transform kalman filter ensemble forecast schemes, J. Atmos.
Sci., 60, 1140–1158, 2003.

Wu, G., Zheng, X., Wang, L., Zhang, S., Liang, X., and Li, Y.: A
New Structure for Error Covariance Matrices and Their Adaptive
Estimation in EnKF Assimilation, Q. J. Roy. Meteor. Soc., 139,
795–804, 2013.

Wu, G., Yi, X., Wang, L., Liang, X., Zhang, S., Zhang, X., and
Zheng, X.: Improving the ensemble transform Kalman filter us-
ing a second-order Taylor approximation of the nonlinear ob-
servation operator, Nonlin. Processes Geophys., 21, 955–970,
https://doi.org/10.5194/npg-21-955-2014, 2014.

Xu, T., Gómez-Hernández, J. J., Zhou, H., and Li, L.: The power
of transient piezometric head data in inverse modeling: An appli-
cation of the localized normal-score EnKF with covariance infla-
tion in a heterogenous bimodal hydraulic conductivity field, Adv.
Water Resour., 54, 100–118, 2013.

Yang, S.-C., Kalnay, E., and Enomoto, T.: Ensemble singular vec-
tors and their use as additive inflation in EnKF, Tellus A, 67,
26536, https://doi.org/10.3402/tellusa.v67.26536, 2015.

Zheng, X.: An adaptive estimation of forecast error statistic for
Kalman filtering data assimilation, Adv. Atmos. Sci., 26, 154–
160, 2009.

Zheng, X. and Basher, R.: Thin-plate smoothing spline modeling of
spatial climate data and its application to mapping south Pacific
rainfall, Mon. Weather Rev., 123, 3086–3102, 1995.

www.nonlin-processes-geophys.net/24/329/2017/ Nonlin. Processes Geophys., 24, 329–341, 2017

https://doi.org/10.5194/npg-21-955-2014
https://doi.org/10.3402/tellusa.v67.26536

	Abstract
	Introduction
	Methodology
	EnKF algorithm
	Step 1: forecast step
	Step 2: analysis step

	Influence matrix and forecast error inflation
	Analysis sensitivity
	Forecast ensemble spread and analysis RMSE

	Numerical experiments
	Dynamical forecast model and observation systems
	Assimilation scheme comparison
	Influence of ensemble size and observation number

	Discussions
	Performance of the GCV inflation
	Computational cost
	Notes

	Conclusions
	Data availability
	Appendix A
	Appendix B
	Competing interests
	Acknowledgements
	References

