Articles | Volume 23, issue 1
https://doi.org/10.5194/npg-23-45-2016
https://doi.org/10.5194/npg-23-45-2016
Research article
 | 
01 Mar 2016
Research article |  | 01 Mar 2016

Cumulative areawise testing in wavelet analysis and its application to geophysical time series

Justin A. Schulte

Related authors

A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020,https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary
Statistical hypothesis testing in wavelet analysis: theoretical developments and applications to Indian rainfall
Justin A. Schulte
Nonlin. Processes Geophys., 26, 91–108, https://doi.org/10.5194/npg-26-91-2019,https://doi.org/10.5194/npg-26-91-2019, 2019
Short summary
Long Island Sound temperature variability and its associations with the ridge–trough dipole and tropical modes of sea surface temperature variability
Justin A. Schulte and Sukyoung Lee
Ocean Sci., 15, 161–178, https://doi.org/10.5194/os-15-161-2019,https://doi.org/10.5194/os-15-161-2019, 2019
Short summary
Wavelet analysis for non-stationary, nonlinear time series
Justin A. Schulte
Nonlin. Processes Geophys., 23, 257–267, https://doi.org/10.5194/npg-23-257-2016,https://doi.org/10.5194/npg-23-257-2016, 2016
Geometric and topological approaches to significance testing in wavelet analysis
J. A. Schulte, C. Duffy, and R. G. Najjar
Nonlin. Processes Geophys., 22, 139–156, https://doi.org/10.5194/npg-22-139-2015,https://doi.org/10.5194/npg-22-139-2015, 2015

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary

Cited articles

Edelsbrunner, H. and Harer, J.: Persistent homology-a survey, Cotemp. Math., 12, 1–26, 2010.
Efron, B.: Bootstrap methods: another look at the jackknife, Ann. Stat., 7, 1–26, 1979.
Ghrist, R.: Barcodes: the persistent topology of data, B. Am. Math. Soc., 45, 61-75, 2008.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Hatcher, A.: Algebraic Topology, Cambridge University Press, New York, 544 pp., 2001.
Download
Short summary
The paper presents a new method called cumulative areawise testing that allows scientists to better extract important signals from geophysical time series. The method was found to be able to distinguish aspects of time series that are random from those of potential physical importance better than existing methods in wavelet analysis.