Articles | Volume 23, issue 6
https://doi.org/10.5194/npg-23-447-2016
https://doi.org/10.5194/npg-23-447-2016
Research article
 | 
09 Dec 2016
Research article |  | 09 Dec 2016

Constraining ecosystem model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements

Jarmo Mäkelä, Jouni Susiluoto, Tiina Markkanen, Mika Aurela, Heikki Järvinen, Ivan Mammarella, Stefan Hagemann, and Tuula Aalto

Related authors

Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024,https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in Northern Europe
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Mueller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2873,https://doi.org/10.5194/egusphere-2023-2873, 2024
Short summary
Implementation and initial calibration of carbon-13 soil organic matter decomposition in the Yasso model
Jarmo Mäkelä, Laura Arppe, Hannu Fritze, Jussi Heinonsalo, Kristiina Karhu, Jari Liski, Markku Oinonen, Petra Straková, and Toni Viskari
Biogeosciences, 19, 4305–4313, https://doi.org/10.5194/bg-19-4305-2022,https://doi.org/10.5194/bg-19-4305-2022, 2022
Short summary
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022,https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation
Toni Viskari, Maisa Laine, Liisa Kulmala, Jarmo Mäkelä, Istem Fer, and Jari Liski
Geosci. Model Dev., 13, 5959–5971, https://doi.org/10.5194/gmd-13-5959-2020,https://doi.org/10.5194/gmd-13-5959-2020, 2020
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary

Cited articles

Aalto, T., Ciais, P., Chevillard, A., and Moulin, C.: Optimal determination of the parameters controlling biospheric CO2 fluxes over Europe using eddy covariance fluxes and satellite NDVI measurements, Tellus B, 56, 93–104, https://doi.org/10.3402/tellusb.v56i2.16413, 2004.
Abramowitz, G., Pitman, A., Gupta, H., Kowalczyk, E., and Wang, Y.: Systematic Bias in Land Surface Models, J. Hydrol., 8, 989–1001, https://doi.org/10.1175/JHM628.1, 2007.
Aurela, M.: Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorological technique, Finnish Meteorol. Inst. Contr., 51, 1–39, 2005.
Aurela, M., Lohila, A., Tuovinen, J., Hatakka, J., Riutta, T., and Laurila, T.: Carbon dioxide exchange on a northern boreal fen, Boreal Environ. Res., 14, 699–710, 2009.
Baldocchi, D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Global Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Download
Short summary
The land-based hydrological cycle is one of the key processes controlling the growth and wilting of plants and the amount of carbon vegetation can assimilate. Recent studies have shown that many land surface models have biases in this area. We optimized parameters in one such model (JSBACH) and were able to enhance the model performance in many respects, but the response to drought remained unaffected. Further studies into this aspect should include alternative stomatal conductance formulations.