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Abstract. We examined parameter optimisation in the JS-
BACH (Kaminski et al., 2013; Knorr and Kattge, 2005; Re-
ick et al., 2013) ecosystem model, applied to two boreal
forest sites (Hyytiälä and Sodankylä) in Finland. We iden-
tified and tested key parameters in soil hydrology and forest
water and carbon-exchange-related formulations, and opti-
mised them using the adaptive Metropolis (AM) algorithm
for Hyytiälä with a 5-year calibration period (2000–2004)
followed by a 4-year validation period (2005–2008). So-
dankylä acted as an independent validation site, where op-
timisations were not made.

The tuning provided estimates for full distribution of pos-
sible parameters, along with information about correlation,
sensitivity and identifiability. Some parameters were corre-
lated with each other due to a phenomenological connec-
tion between carbon uptake and water stress or other con-
nections due to the set-up of the model formulations. The
latter holds especially for vegetation phenology parameters.
The least identifiable parameters include phenology param-
eters, parameters connecting relative humidity and soil dry-
ness, and the field capacity of the skin reservoir. These soil
parameters were masked by the large contribution from veg-
etation transpiration.

In addition to leaf area index and the maximum car-
boxylation rate, the most effective parameters adjusting the
gross primary production (GPP) and evapotranspiration (ET)
fluxes in seasonal tuning were related to soil wilting point,
drainage and moisture stress imposed on vegetation. For
daily and half-hourly tunings the most important parameters
were the ratio of leaf internal CO2 concentration to exter-

nal CO2 and the parameter connecting relative humidity and
soil dryness. Effectively the seasonal tuning transferred water
from soil moisture into ET, and daily and half-hourly tunings
reversed this process.

The seasonal tuning improved the month-to-month devel-
opment of GPP and ET, and produced the most stable esti-
mates of water use efficiency. When compared to the sea-
sonal tuning, the daily tuning is worse on the seasonal scale.
However, daily parametrisation reproduced the observations
for average diurnal cycle best, except for the GPP for So-
dankylä validation period, where half-hourly tuned param-
eters were better. In general, the daily tuning provided the
largest reduction in model–data mismatch.

The models response to drought was unaffected by our
parametrisations and further studies are needed into enhanc-
ing the dry response in JSBACH.

1 Introduction

Inverse modelling of ecosystem model parameters against in
situ observations is an established way to tune model param-
eters (e.g. Scharnagl et al., 2011). As observation sites have
their own characteristics, it is necessary to make local site
simulations for model evaluation and calibration as they may
reveal new insight into model behaviour and guide further
development. Model–data fusion has been applied for bo-
real forest sites by, e.g., Aalto et al. (2004) Peltoniemi et al.
(2015b), Thum et al. (2007, 2008) and Wu et al. (2011).
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In this study we perform site level parameter optimisation
in the JSBACH model (Kaminski et al., 2013; Knorr and
Kattge, 2005; Reick et al., 2013). JSBACH is the land sur-
face component of the Earth system model of the Max Planck
Institute for Meteorology (MPI-ESM), used to simulate wa-
ter and carbon storages and fluxes in the soil–vegetation–
atmosphere continuum. The water and carbon fluxes are cou-
pled in the model and thus modification of parameters related
to one component usually has an effect on the others as well.
The optimisation process and the optimised values are also
affected by the assimilation frequency and interval in min-
imising the model–data mismatch. This effect can be stud-
ied in numerous ways; e.g. Santaren et al. (2014) varied the
length of assimilation interval while Matheny et al. (2014)
focused on the diurnal error patterns.

The motivation for this study comes from results showing
that CMIP5 model simulations, one of which is MPI-ESM,
have systematic evapotranspiration biases over continental
areas (Mueller and Seneviratne, 2014). These kinds of bi-
ases not only have significant implications for climate change
projections (Boé and Terray, 2008) but also have a distinc-
tive behaviour on a regional scale. In addition, a compara-
tive study of the gross primary production (GPP) of Finnish
forests (Peltoniemi et al., 2015a) revealed that JSBACH has
an insufficient response to water limitation in Finland – it
tends to overestimate GPP and evapotranspiration during dry
periods. This is especially apparent in the dry year 2006, as
JSBACH is unable to transfer the reduced rainfall into lower
levels of GPP.

In this study we apply the JSBACH ecosystem model for
Hyytiälä (Kolari et al., 2009; Suni et al., 2003) and So-
dankylä (Aurela, 2005; Thum et al., 2008) sites. We iden-
tify key parameters in soil hydrology and evapotranspiration-
related formulations and test their effectiveness with elemen-
tary methods. We study the effect of different timescales
(seasonal, daily and half-hourly) on the assimilation process
and the effect of this on the optimised parameter values. Sev-
eral optimisations are performed using the adaptive Metropo-
lis (AM) algorithm over a 5-year calibration period (2000–
2004) followed by a 4-year validation period (2005–2008).

The goals of this study are to test the applicability of the
AM optimisation method for JSBACH and the impact of dif-
ferent temporal resolutions on the optimisation process, and
to improve the models response to environmental drivers, fo-
cusing on dryness.

2 Materials and methods

2.1 Measurements, sites and instrumentation

In this study we use site level data from two Finnish measure-
ment sites: Hyytiälä (61◦51′ N, 24◦17′ E; 180 m a.s.l.) and
Sodankylä (67◦22′ N, 26◦38′ E; 179 m a.s.l.). These well-
established sites have long continuous measurement data sets

representing the southern and northern boreal Finnish conif-
erous evergreen forests. The data used in this study are avail-
able for the scientific community through various databases
such as FLUXNET (re3data.org, 2016).

Hyytiälä site is a Finnish Scots pine (Pinus sylvestris) for-
est (Kolari et al., 2009), planted in 1962 after burning and
mechanical soil preparation. The soil type in Hyytiälä is Hap-
lic Podzol on glacial till and the site is of medium fertil-
ity (Kolari et al., 2009). The forest also has sparse under-
story of Norway Spruce (Picea abies) and scattered decid-
uous trees. The maximum of measured all-sided leaf area
index (LAI) is 6.5 m2 m−2 for the Scots pine. The carbon
dioxide (CO2) and water vapour (H2O) fluxes between vege-
tation and atmosphere have been measured in Hyytiälä con-
tinuously since 1997 (Vesala et al., 2005).

The Sodankylä forest, in Sodankylä at the Finnish Mete-
orological Institute’s Arctic Research Centre, is also a Scots
pine forest (Pinus sylvestris) with maximum measured LAI
of 3.6 m2 m−2 as determined from a forest inventory in early
autumn (Thum et al., 2007). The forest on fluvial sandy Pod-
zol has been naturally regenerated after forest fires with tree
age ranging approximately from 50 to 100 years. The sparse
ground vegetation consists of lichens (73 %), mosses (12 %)
and ericaceous shrubs (15 %). The CO2 and H2O flux mea-
surements in Sodankylä have been running since 2000 (Au-
rela, 2005).

The CO2 and H2O fluxes were measured by the microm-
eteorological eddy covariance (EC) method, which provides
a direct measurement of the mass and energy exchange be-
tween the atmosphere and the biosphere averaged on an
ecosystem scale. In the EC method, the flux is obtained as
the covariance of the high-frequency (10 Hz) observations of
vertical wind speed and the constituent in question (Baldoc-
chi, 2003). The CO2 fluxes were corrected for the storage
change below the measurement height to accurately estimate
the net ecosystem CO2 exchange (NEE). The GPP was de-
rived by subtracting the modelled respiration (R) from the
NEE observation (GPP=NEE−R) utilising standard flux
partitioning procedures (Reichstein et al., 2005; Kolari et al.,
2009). By using the same parametrisations as in the parti-
tioning, the NEE and GPP time series were gap-filled for
comparison with the model results. The daily evapotranspira-
tion (ET) sums were calculated from H2O flux data that were
gap-filled based on the mean diurnal cycles or regressions on
available radiative energy.

The EC instrumentation in Hyytiälä consisted of a So-
lent 1012R3 three-axis sonic anemometer (Gill Instru-
ments Ltd., Lymington, UK) and a LI-6262 closed-path
CO2/H2O gas analyser (Li-Cor Inc., Lincoln, NE, USA),
while in Sodankylä a USA-1 (METEK GmbH, Elmshorn,
Germany) anemometer and an LI-7000 (Li-Cor., Inc., Lin-
coln, NE, USA) closed-path gas analyser were used. The
EC fluxes were calculated as half-hourly averages taking into
account the required corrections. The measurement systems
and the post-processing procedures have been presented in
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more detail for Hyytiälä by Kolari et al. (2004) and Mam-
marella et al. (2009), and for Sodankylä by Aurela (2005)
and Aurela et al. (2009).

The measurement error in the EC flux data may be clas-
sified into two categories: systematic errors and random er-
rors. The main systematic errors (density fluctuations, high-
frequency losses, calibration issues) are mostly corrected for
as part of the post-processing of the data, and the random
errors tend to dominate the uncertainty of the instantaneous
fluxes. The random error is often assumed Gaussian but can
be more accurately approximated by a symmetric exponen-
tial distribution (Richardson et al., 2006). It increases linearly
with the magnitude of the flux, with a standard deviation typi-
cally less than 20 % of the flux (Richardson et al., 2008; Ran-
nik et al., 2016).

2.2 The JSBACH model

JSBACH is a process-based ecosystem model and the land
surface component of the MPI-ESM. We used JSBACH of-
fline using an observational atmospheric data set to force
the model. Implications of this one-way coupling with the
atmosphere include lack of feedback from the surface en-
ergy balance to the atmosphere; i.e. latent and sensible heat
fluxes and surface thermal radiation do not directly affect
prescribed air temperature or humidity. Similarly, the feed-
back of surface to the vertical transfer coefficients within the
atmospheric surface layer is missing, as the wind speed that
drives mixing is prescribed. Furthermore, since we use site
level data (a single grid point), the grid resolution does not
affect the results (Tesfa et al., 2014; Singh et al., 2015). We
give here a general introduction to JSBACH, whereas a more
complete model description can be found in Roeckner et al.
(2003).

In JSBACH the land surface is a fractional structure where
the land grid cells are divided into tiles representing the
most prevalent vegetation classes called plant functional
types (PFTs) within each grid cell (Reick et al., 2013). The
grid cell is first divided into bare soil and vegetative area
which is furthermore fractionally divided into PFTs. The
model was set up to effectively use only one tile, coniferous
evergreen trees. Henceforth, all model and process descrip-
tions are considered in relation to coniferous evergreen trees
and no distinction between PFT-specific and general param-
eters are made in this study.

Coniferous evergreen trees are characterised by a set of pa-
rameters that control vegetation-related biological and phys-
ical processes accounting for the land–atmosphere interac-
tions. We made use of expert knowledge to set these pa-
rameters for our local sites and verified that they are in line
with those presented by Hagemann (2002) and Hagemann
and Stacke (2015).

The seasonal development of LAI is regulated by air tem-
perature and soil moisture with a specific maximum LAI as
a limiting value. The cycle is driven by a pseudo soil tem-

perature that is a weighted running mean of air temperature.
The predictions of phenology are produced by the Logistic
Growth Phenology (LoGro-P) model of JSBACH.

Photosynthesis is described by the biochemical photosyn-
thesis model (Farquhar et al., 1980). Following Kattge et al.
(2009), we set the maximum carboxylation rate at 25 ◦C to
1.9 times the maximum electron transport rate at 25 ◦C.

The photosynthetic rate is resolved in two steps. First
the stomatal conductance under conditions with no water
stress is assumed to be controlled by photosynthetic activity
(Schulze et al., 1994). Here the leaf internal CO2 concentra-
tion is assumed to be a constant fraction of ambient concen-
tration, which allows for an explicit resolution of the photo-
synthesis (Knorr, 1997). Then the impact of soil water avail-
ability is accounted for by a soil moisture-dependent multi-
plier that is identical for each canopy layer (Knorr, 1997).

Radiation absorption is estimated by a two-stream approx-
imation within a three-layer canopy (Sellers, 1985). Espe-
cially in the sparse canopies, the radiation absorption is af-
fected by clumping of the leaves, which is here taken into
account according to the formulation by Knorr (1997).

2.3 The JSBACH model spin-up and runs

Before tuning the JSBACH model, some of the more slowly
changing variables (e.g. LAI) need to be equilibrated in or-
der to bring the model into a (semi-)steady state. We achieve
this by running the model through a spin-up period generated
by looping the measurement interval over itself. During this
period the necessary variables are equilibrated and their val-
ues become acceptable for the tuning process. At the end of
the spin-up a restart file is generated so that the model can be
restarted from this state.

We use half-hourly measurements from 1999 to 2008 for
Hyytiälä. The spin-up finishes at the end of 1999 and is
followed by a calibration period (abbreviated as HC for
Hyytiälä calibration) of 2000–2004 and a validation pe-
riod (HV for Hyytiälä validation) of 2005–2008, including
an exceptionally dry summer in 2006. The set-up for So-
dankylä is similar but we use measurements from 2000 to
2008, where the spin-up finishes at the end of 2008. The
model is then restarted from the start of 2000, but we only ex-
amine the Sodankylä validation period (SV) of 2005–2008.
The main reason to exclude the Sodankylä calibration period
is that essentially we do not calibrate (or tune) the model for
Sodankylä and we do not want to appear to do so.

The meteorological data used to drive the climate were air
temperature, air pressure, atmospheric CO2 concentration,
precipitation, specific humidity, short- and longwave radia-
tion, potential shortwave radiation and wind speed.

2.4 The parameters

The JSBACH model was modified to fit our custom-built test
bed so that all parameters of interest could be read from an
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Table 1. Parameter descriptions with references to equations in Appendix A.

Parameter Units Class Description

1max – I Maximum all-sided leaf area index that vegetation can reach. Eq. (A1)
VC,max � I Farquhar model maximum carboxylation rate at 25 ◦C of the enzyme Rubisco (coupled with Eq. (A8)

maximum electron transport rate at 25 ◦C with a factor of 1.9) [�= µmol (CO2) m−2 s−1
].

vegmax – I Fraction of vegetative soil in a grid cell. The rest is bare soil. –
αq – II Farquhar model efficiency for photon capture at 25 ◦C. Eq. (A11)
cb – II Adjustment parameter used in stability functions for momentum and heat (Louis, 1979). –
fC3 – II Ratio of C3-plant internal/external CO2 concentration. Eq. (A9)
pint – II Fraction of precipitation intercepted by the canopy. Eq. (A12)
wdr – II Critical fraction of field capacity above which fast drainage occurs for soil water content. –
whum – II Fraction depicting relative humidity based on soil dryness. Eq. (A17)
wpwp – II Fraction of soil moisture at permanent wilting point. Eq. (A15)
wskin m II Maximum water content of the skin reservoir of bare soil. –
wtsp – II Fraction of soil moisture above which transpiration is not affected by soil moisture stress. Eq. (A15)
s∗sm m II Depth for correction of surface temperature for snowmelt. –
Talt

◦C III LoGro phenology: alternating temperature. Cut-off temperature used for calculating heat sum Eqs. (A2), (A3)
to determine the spring event and the number of chill days since the last autumn event.

C∗decay – III LoGro phenology: memory loss parameter for chill days. Eq. (A4)
Smin

◦C III LoGro phenology: minimum value of critical heat sum. Eq. (A4)
S∗range

◦C III LoGro phenology: maximal range of critical heat sum. Eq. (A4)
Tps

◦C III LoGro phenology: memory loss parameter for calculating pseudo soil temperature. Eq. (A6)

∗ These parameters were tested but yielded no or only a minimal response to cost functions and were thus removed from the trial.

external file. We examined 15 parameters (Table 1) that are
for convenience separated into three classes. The class I pa-
rameters are used differently from those of class II and III –
namely, class I parameters are only tuned in the seasonal tun-
ing (explained in detail in Sect. 3.1). Additionally, the only
distinction between class II and III parameters is that the lat-
ter belong to a specific part of JSBACH called the LoGro-P
– there is no difference in how these parameters are used. We
also note that the only parameter (of those examined) that
can vary from site to site is vegmax (the vegetative fraction of
a grid cell).

2.5 Parameter sampling

The parameter sampling in this study was done with the AM
algorithm. The AM algorithm is an adaptive Markov chain
Monte Carlo (MCMC) process described below (it is not
strictly Markovian but satisfies the necessary ergodicity re-
quirements). AM is based on the classical Metropolis algo-
rithm, extended with the adaptation of the parameter pro-
posal distribution. Due to the adaptive nature of AM, it does
not rely on the choice of the initial proposal distribution. AM
is a sampling method that produces estimates of the full dis-
tribution of possible parameter values (unlike straightforward
optimisation methods), thus enabling, e.g., the study of pa-
rameter identifiability, sensitivity and (nonlinear) correlation
– this information is paramount to understanding the optimi-
sation process in contrast to merely receiving the optimised
parameter values. The rigorous mathematical presentation of
the AM algorithm is given in Haario et al. (2001).

The AM algorithm draws samples (sets of parameters)
from the parameter space to generate probability distribu-
tions for the parameters. The consecutive draws form an
MCMC chain. We used the algorithm simultaneously for sev-
eral independent chains that are parallel adaptations of the al-
gorithmic process (see e.g. Craiu et al., 2009; Solonen et al.,
2012) – we take several random starting points and launch
the algorithm for each of these simultaneously. The history
of all chains is used for updating the proposal covariance ma-
trix that describes how the parameters relate to one another.
Our initial proposal covariance matrix had diagonal elements
corresponding to 1/200 of the respective parameter’s range.
The first sample for each chain was chosen at random within
this range. The algorithmic process can be described by a few
steps:

1. Draw a new sample (x′) of the parameter space from
the vicinity of the current sample (x) using the current
proposal covariance matrix.

2. Calculate the acceptance ratio (a) for the drawn sample.
This is the value of a likelihood function (f ) that is pro-
portional to the desired probability distribution, at the
drawn sample divided by the value at the current sam-
ple (a= f (x′)/f (x)).

3. Accept the new candidate (x′) with the probability a (if
a≥ 1, we always accept). If the candidate was rejected,
the current sample (x) is reused as a basis of the next
draw and repeated in the chain. Update the covariance
matrix and draw a new sample.
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We obtain the likelihood function (f ) from the cost func-
tions (cf) described below by assuming Gaussian error statis-
tics and setting f = e−cf. In general to estimate the distri-
bution of parameters of any model based on some data, we
require some information about the underlying measurement
and modelling errors. We treat the JSBACH model as de-
scribed by the equation y=M(x, θ)+ e. Here y are the ob-
servations, x is the model state vector, θ are the current pa-
rameters and e is the model–data mismatch. Since we only
have a robust estimate for the measurement errors and no
true error statistics for the model, the full error (e) is treated
as Gaussian white noise.

The cost function (Eq. 1) used in this study for seasonal
tuning is based on summary statistics of GPP and evapo-
transpiration (ET) along with the maximum of LAI. The cost
function (Eq. 1) calculates the relative error in total GPP, ET
and growing season maximum of LAI against observations
(these are respectively denoted as G1, E1 and L1) and sums
them up. Overlined variables refer to the mean value of that
variable for a given period (calibration or validation), sub-
scripts denote observation or model results.

cf1 =

G1︷ ︸︸ ︷(
GPPmod−GPPobs

GPPobs

)2

+

E1︷ ︸︸ ︷(
ETmod−ETobs

ETobs

)2

+

L1︷ ︸︸ ︷(
max(LAImod)−max(LAIobs)

max(LAIobs)

)2

(1)

The second cost function (Eq. 2) is a slightly modified
mean squared error estimate used for daily (cf2) and half-
hourly (cf3) tuning. With multiple variables there is always
the problem of having one variable dominating over the oth-
ers. Since no true errors were available, it was decided to
normalise the residuals using the mean of observations in the
cost function (Eq. 2). This way the resulting function is sen-
sitive to changes in both variables – AM is used as a noise-
resistant optimiser and sampling is done in the spirit of study-
ing the identifiability and correlations of the parameters. The
components are denoted as G2, E2 for daily and G3, E3 for
half-hourly tuning.

cf2,3 =

G2,3︷ ︸︸ ︷
1

NGPP

∑(
GPPmod−GPPobs

GPPobs

)2

+

E2,3︷ ︸︸ ︷
1
NET

∑(
ETmod−ETobs

ETobs

)2

(2)

As noted previously, JSBACH was used uncoupled from the
other components of the full MPI-ESM. This has a tendency
to lead to biased results in the model runs as has been recently
studied by Dalmonech et al. (2015). Especially in the high

latitudes, evapotranspiration can be unrealistic during winter
since night-time is longer and temperatures low. In order to
improve the credibility of our results, we masked the evapo-
transpiration values of the coldest periods, and only took into
account those from May to September for each year in both
cost functions.

2.6 Parameter analysis

The optimised parameter values are taken as the mean values
of all chains in the sampling process. In the case that the pa-
rameter chains converge to a bound of an a priori prescribed
range of allowed values, the maximum a posteriori (MAP)
value is used instead. After tuning the model, we analysed
different aspects of this process. Class I parameters are ex-
cluded from this analysis since they are used to bring the
model to an “acceptable initial state”; hence, we regard them
as a part of the model initialisation (our motivation is ex-
plained in Sect. 3.1).

We calculated the correlations and correlation matrices be-
tween different parameters for different tunings using the
tested parameter vectors in the AM process. Then we per-
formed a principal component analysis (PCA) on the cor-
relation matrices to get the eigenvectors (vi) and eigenval-
ues (ei) of the least identifiable parameters in the tuning pro-
cess with the given data. The PCA transforms the correlation
matrix into an orthogonal form where the eigenvector related
to the greatest eigenvalue is the least identifiable with the

given data. We then calculate the weight (wi=

√
e2

i∑
i

e2
i
) for

each component (or vector vi; note that the squared weights
sum up to one). We also determine the most dominant pa-
rameters for each component (vi) by similarly dividing the
length of the vector towards that parameter by the length of
the whole vector (weight of vector components).

The information derived with PCA could be extracted
by analysing the parameters posterior probability distribu-
tions, but PCA yields a simple, straightforward method for
the same purpose. The main caveat of the standard PCA
method is that it is not applicable to cases with strong nonlin-
ear correlations. Therefore, we also calculate kernel density
estimates (KDE) for the parameters to show that there are
no nonlinear correlations. The KDE method places a Gaus-
sian distribution (kernels) centred at each parameter of the
MCMC chain and then sums these kernels to produce an esti-
mate for the whole distribution. The bandwidth is calculated
using the Scott’s rule (Scott, 2004).

We also wanted to examine which parameters contributed
the most to the change in the cost function values as we
switched from one parameter set to another. This was done
by calculating the change in the cost function values of the
tuned parameter set and a set where one parameter has been
reverted to the value the tuning started with (henceforth, the
reference values are for seasonal tuning the default values
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and for daily and half-hourly tuning the seasonally tuned val-
ues). We call this method “relative effectiveness”, since we
want to analyse the effect of the parameters to the cost func-
tion. For each tuned set of parameter values, the relative ef-
fectiveness of a parameter is calculated as follows:

1. change one parameter from the set of tuned parameter
values to a reference value and calculate the difference
in the cost function for the changed set and the tuned
set;

2. return the changed parameter to the tuned value and re-
peat for all parameters (sum up the differences);

3. the relative effectiveness for each parameter is the dif-
ference obtained from step 1 divided by the sum from
step 2.

The relative effectiveness is similar to a class of methods
commonly referred to as the one-at-a-time (OAT) or one-
factor-at-a-time (OFAT) methods. These methods are gen-
erally used to acquire robust information about model be-
haviour when one parameter at a time is changed to a new
and hopefully better value (e.g. Murphy et al., 2004). The
main difference of our method to classical methods such
as the Morris OAT (Morris, 1991) is that in such methods
the change in values is (usually) random, whereas we have
fixed values. Additionally, our point of view is from the op-
timised parameters to the original state – we have already
optimised the parameters (as a group) and merely want some
robust and easily comprehensible information about the ef-
fect of changes in parameter values to the cost functions.
This method does not reveal information about how well the
parameters constrain the cost function (e.g. we could have
a highly dominating parameter that would optimise to the
default value and hence the relative effectiveness would be
zero), rather which parameters contribute most to the change
in cost function values.

Lastly, we calculate the root mean squared error (RMSE;√∑
i

(oi−mi )
2

n
), bias (

∑
i

oi−mi
n

) and the coefficient of determi-

nation (r2
= 1−

∑
i

(oi−mi )
2∑

i

(oi−oi )
2 ) for the time series generated by

the different tunings (oi is observed and mi is modelled).

3 Model tuning

The model was optimised for Hyytiälä with the AM algo-
rithm using three different timescales: seasonal, daily and
half-hourly tuning, which are described below. Tuning was
done on a powerful laptop with an Intel Core i7-3520M pro-
cessor. We removed unwanted output streams from the model
and tweaked the I/O. With a single core the spin-up genera-
tion takes approximately 150 s, the run through calibration
period with daily output takes 20 s and with half-hourly out-
put 320 s. We used daily output also for the seasonal tuning.

3.1 Seasonal tuning

The fundamental motivation for the seasonal tuning is to en-
sure that the model reproduces the observed growing sea-
son maximum of LAI, since we have previously noticed that
JSBACH underestimates LAI at the site level (even the de-
fault value of1max is lower than the measured maximum for
Hyytiälä). The reason for this approach was to enhance the
vegetation transpiration and to emphasise the model response
to precipitation. We also want to ensure that the model per-
forms adequately well in terms of seasonal cumulative GPP
and ET. The seasonal tuning was done in three consecutive
steps each using the cost function (Eq. 1). The procedure is
as follows:

1. All three class I parameters are tuned with four indepen-
dent chains each consisting of 3000 samples. This step
required a 30-year spin-up for each sample separately.

2. Class II and III parameters are each separately tested
with 24 evenly separated values for an extensive range
and those nine parameters that did not yield a negligible
difference in the maximal and minimal values in the ob-
jective function are tuned. The consequent tuning was
done with eight independent chains each consisting of
10 000 samples. A single spin-up, common for all sam-
ples, used optimal parameter values from step 1 and de-
fault values for the rest of the parameters.

3. All the previously tuned 12 parameters with eight inde-
pendent chains each consisting of 10 000 samples are re-
turned. Initial proposal covariance was generated from
previous step and spin-up was generated separately for
each sample.

At the end of seasonal tuning, class I parameters were fixed
and a single spin-up was generated to be used with daily and
half-hourly tuning. This approach is computationally justifi-
able (as we do not have to rerun the spin-up at each iteration
of the algorithm) and is also acceptable from a modelling
point of view since the robust site level scaling has already
been done. The vegetative fraction of a grid cell remained at
its default value of 0.52 and the carboxylation rate at 25 ◦C
was lowered to 45.0 (and the electron transport rate to 85.5).

3.2 Daily and half-hourly tuning

The difference in daily and half-hourly tuning is the time in-
terval used in the model output and observations in the cost
function (Eq. 2). For both tuning runs we first tested the re-
sponse of class II and III parameters against the cost function
(Eq. 2) and removed those parameters that yielded only neg-
ligible or no response (as in step 2 in “Seasonal tuning”).
The rest of the parameters (12) were then tuned using eight
independent chains each consisting of 10 000 samples.

It should be noted that even though the cost function
(Eq. 2) formulation is the same for daily and half-hourly tun-
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Table 2. The highest correlations between parameters.

Tuning Parameters r

Seasonal fC3 wtsp 0.49
Talt αq 0.40

Daily fC3 wtsp 0.52
wdr wtsp 0.52
Talt Tps −0.48
Talt Smin 0.47

Half-hourly fC3 wtsp 0.68
pint wskin −0.44

ing, the values of the cost function are not directly compa-
rable. Half-hourly tuning uses 48 values per day, and the re-
sulting diurnal pattern resembles the form of the normal dis-
tribution. In daily tuning we use an average of these values.
In practice, the component and cost function values will be
higher for half-hourly tuning.

3.3 Tuning for Sodankylä

After tuning the model for Hyytiälä we took the parame-
ter set from seasonal tuning and re-tuned only the maxi-
mum LAI parameter (1max) with the cost function (Eq. 1)
for Sodankylä. This was done because the measured LAI
for Sodankylä is approximately half of that for Hyytiälä.
The other parameter values were taken from the respective
Hyytiälä tuning runs and spin-ups were generated similarly
to Hyytiälä spin-ups so that we could use the Sodankylä re-
sults to validate the tuning process.

4 Results and discussion

The parameters and cost function components involved in the
different phases of the optimisation process need to be stud-
ied before the performance of the optimisation method can
be evaluated.

As noted above, we decided to reject the unreliable win-
tertime ET values. This masking leaves out the start of the
growing season, which reduces the reliability of some of the
tuned parameters, including all the LoGro phenology model
parameters (class III), which mostly affect the timing of the
spring event and regulate the development of the LAI to-
wards the peak season. However, as a result of the tuning
processes, all the analysed parameters were revealed to have
unimodal posterior probability distributions, with different
skewness and deviations.

We analysed the correlations and effectiveness of the pa-
rameters in the seasonal, daily and half-hourly optimisations
on the Hyytiälä site for the calibration period. We also anal-
ysed the contributions from the cost function components re-
ferring to ET, GPP and LAI and generated the time series

Table 3. Significant components of principal component analysis
for the different tunings. The given parameters are the most domi-
nant within the component and the ratio is how many times larger
the factor related to the first parameter is when compared to that
of the second. Coverage reveals how much of the component is ac-
counted for by the given parameters (sum of the weights of given
vector components).

Component Weight Parameters Ratio Coverage

Seasonal 1 0.996 whum wskin 2.1 > 99 %
Daily 1 0.717 Tps wskin 1.4 > 99 %
Daily 2 0.261 whum wtsp 2.3 > 99 %
Half-hourly 1 0.530 Tps – – > 99 %
Half-hourly 2 0.310 wskin whum 1.7 96 %
Half-hourly 3 0.121 Talt – – > 99 %

and daily cycles of GPP and ET for both Hyytiälä and So-
dankylä sites. For all these examinations, individual spin-ups
were generated using the optimised parameter values.

The parameter correlations (Table 2) do not reveal much
information, which is common for larger systems where the
underlying parameter dependencies are more complex. Usu-
ally more sophisticated methods are used to analyse the pa-
rameters, but we omit these examinations here since pairwise
Kernel density estimates (Fig. 1) did not reveal any new in-
sights.

The strongest correlation was between the ratio of leaf in-
ternal CO2 concentration to external CO2 (fC3) and fraction
of soil moisture above which transpiration is unaffected by
soil moisture stress (wtsp) in all the tunings. This positive
correlation strengthens as we increase the temporal resolu-
tion (and the complexity of the underlying cost function).
This is due to the carbon assimilation that is limited not only
by the amount of carbon available but also by a linear wa-
ter stress factor (which takes the value of zero at the wilting
point (wwilt) and one at the wtsp), which is checked at each
time step. Most of the other parameters with high correlations
are those of the LoGro phenology model, where we would
expect high correlation since the parameters are intimately
connected.

Approximately half of the parameters with high correla-
tion are also the least identifiable (Table 3) with the given
data and cost function. This means that the values these pa-
rameters acquire, as a result of the tuning process, are the
most unreliable – it does not reflect on the parameters contri-
bution to the cost function. The PCA merely highlights where
most of the parametric unreliability lies.

The PCA analysis revealed that most of the unreliability is
explained by a handful of parameters. Disregarding those of
the LoGro phenology model, the two most dominantly un-
reliable parameters in every tuning were the fraction depict-
ing relative humidity based on soil dryness (whum) and the
maximum field capacity of the skin reservoir (wskin). Both
of these parameters affect the amount of water available for
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Figure 1. Kernel density estimates of the last 20 000 parameter samples with daily (upper triangle) and half-hourly tunings. The contours
correspond to densities in a two-dimensional Gaussian distribution (µx , µy = 0, σx , σy = 1) with 2σ (black), 1.5σ (green), σ (brown),
0.5σ (blue).

evaporation from bare soil and are both subject to changes in
other parameters. Bare soil evaporation is also dominated by
vegetative transpiration, which explains why these two pa-
rameters are the most unreliable.

4.1 The parameters and their relative effectiveness

The default and optimised parameter values from the differ-
ent tuning metrics are presented in Table 4 along with their
relative effectiveness. The reference values for seasonal tun-
ing are the default values. Since we fixed class I parame-
ters with seasonal tuning, the realistic reference values for
daily and half-hourly tunings are the seasonal parameter val-
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Table 4. Default and optimised parameter values using the last 20 000 samples (if no value is given, the parameter was not part of that tuning,
and the default value was used instead). The percentage next to a parameter value is the effectiveness of that parameter for that tuning. The
reference values for seasonal tuning are the default values and for daily and half-hourly tunings the seasonal values.

Parameter Default Seasonal Daily Half-hourly

αq 0.28 0.26 7 % 0.30 3 % 0.27 1 %
cb 5.0 – – 8.8 7 % 5.0 0 %
fC3 0.87 0.88 8 % 0.72 70 % 0.76 68 %
pint 0.25 0.27 1 % 0.49 4 % 0.27 0 %
wdr 0.9 0.79 14 % 0.87 1 % 0.75 −1 %
whum 0.5 0.54 1 % 0.25 14 % 0.37 22 %
wpwp 0.35 0.28 10 % 0.34 0 % 0.31 −1 %
wskin [m] 2.0× 10−4 3.1× 10−4 6 % 3.0× 10−4 0 % 2.2× 10−4 6 %
wtsp 0.75 0.64 53 % 0.60 1 % 0.75 3 %
Talt [

◦C] 4.0 8.1 0 % 6.9 1 % 6.9 2 %
Smin [

◦C] 10.0 – – 23.0 −0 % 14.7 −0 %
Tps [

◦C] 10.0 – – 21.0 −0 % 12.4 −0 %

ues. Here we note that using one spin-up for all daily and
half-hourly optimisation runs is computationally justifiable
but generates errors as the general spin-up differs from those
generated by the optimised parameters. These errors are rel-
atively small but give rise to, e.g., the negative relative effec-
tiveness values in daily and half-hourly parametrisations.

Most seasonally tuned parameters are near their default
values and the most effective parameters are the fraction of
soil moisture above which transpiration is unaffected by soil
moisture stress (wtsp), the fraction of soil moisture at perma-
nent wilting point (wpwp) and the fraction of field capacity
above which fast drainage occurs (wdr). For daily and half-
hourly tunings the most important parameters are the ratio
of leaf internal CO2 concentration to external CO2 (fC3) and
the fraction depicting relative humidity (whum). It should be
noted that whum was one of the least identifiable parame-
ters for seasonal tuning. Taking into account the importance
of these parameters on transpiration and soil moisture esti-
mations, we took a closer look at modelled soil moisture
and evapotranspiration components for the calibration period
(taking into account only values from May to September for
each year as explained at the end of Sect. 2.5.

When we compare the model output streams with seasonal
against those with default parametrisation, we notice that the
average evapotranspiration for the calibration period has in-
creased 15 %. Most of this is due to not only added transpira-
tion (18 % increase) but also increased evaporation (6 %). In
addition drainage was accelerated by 11 %. These increases
are mostly compensated by a 15 % reduction in average soil
moisture. In addition soil moisture values that are under the
limit when transpiration is affected by soil moisture stress
(below the value of wtsp) increased 2.3 %.

The daily and half-hourly tunings lower the average evap-
otranspiration by 22 and 35 % respectively, when compared
to the seasonal values. Transpiration is decreased by 28 and
37 %, whereas evaporation is increased by 0.5 % and de-

creased by 28 % respectively, for daily tuning and half-hourly
tuning. Soil moisture is increased by 11 and 8 % and the
amount of values below wtsp is decreased by 62 % for daily
tuning and increased by 7 % for half-hourly tuning. Out of
curiosity, both the adjustment parameter in stability func-
tions (cb) and the fraction of precipitation intercepted by
canopy (pint) have been significantly increased with daily
tuning and returned to seasonally tuned values with half-
hourly tuning.

4.2 The cost function components

Using the optimised values (parametrisations), we calculated
the components of each cost function for Hyytiälä calibra-
tion period and Hyytiälä and Sodankylä validation period
(Table 5).

First, we note that with the default parameters L1 domi-
nates cf1 for Hyytiälä and contributes approximately 90 % to
its value. As expected the L1 for Sodankylä is not as dom-
inant as for Hyytiälä since the measured maximum of LAI
for Hyytiälä is roughly half as large as for Sodankylä, which
directly lowers the LAI component in cost function (Eq. 1).
The L1 contribution is significantly reduced with the season-
ally tuned parameters as was our intention and even though
LAI plays no part in daily and half-hourly tunings, the differ-
ences in the maximum value are negligible.

Second, the value of the E1 component (error in seasonal
ET) with default parametrisation is significantly increased in
daily and especially half-hourly parametrisations. Simultane-
ously the value of G1 is significantly lowered. The compo-
nent values for seasonal parametrisation are better than the
default values with the exception of E1 for Hyytiälä valida-
tion period.

Third, for the cost function (Eq. 2) the pairwise ratio of
dominating Ei or Gi components in all tunings is 5 : 1. On
average E2/E3 contributes to approximately 60% of cf2/cf3.
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Table 5. Cost function components for each parametrisation for Hyytiälä calibration (HC), Hyytiälä validation (HV) and Sodankylä valida-
tion (SV) periods. L1, E1 and G1 are the LAI, ET and GPP components in cost function (Eq. 1), represented by cf1 and used for seasonal
tuning. Likewise E2 and G2 are the components in cost function (Eq. 2) for daily values (cf2), whereas E3 and G3 are for half-hourly
values (cf3). Note that the values of cf2 and cf3 are not directly comparable.

L1 E1 G1 E2 G2 E3 G3 cf1 cf2 cf3

HC Default 0.396 0.021 0.036 0.306 0.191 1.126 0.681 0.45 0.50 1.8
Seasonal 5× 10−5 1.7× 10−4 5.7× 10−6 0.343 0.161 1.326 0.720 2.3× 10−4 0.50 2.0
Daily 7.4× 10−5 0.055 1.4× 10−4 0.206 0.149 0.906 0.683 0.06 0.36 1.6
Half-hourly 1.0× 10−4 0.128 5.4× 10−3 0.276 0.151 0.864 0.661 0.13 0.43 1.5

HV Default 0.396 0.002 0.028 0.226 0.157 1.027 0.479 0.43 0.38 1.5
Seasonal 9.3× 10−5 0.011 7.5× 10−4 0.300 0.134 1.370 0.459 0.01 0.43 1.8
Daily 1.4× 10−4 0.007 3.5× 10−4 0.164 0.124 0.981 0.446 7× 10−3 0.29 1.4
Half-hourly 1.1× 10−4 0.058 2.9× 10−3 0.182 0.118 0.748 0.412 0.06 0.30 1.2

SV Default 0.108 4.0× 10−3 0.140 0.423 0.596 1.660 1.795 0.25 1.02 3.5
Seasonal 5.9× 10−3 1.8× 10−5 0.068 0.467 0.411 1.786 1.429 0.07 0.88 3.2
Daily 6.1× 10−3 0.063 0.048 0.289 0.352 1.258 1.294 0.12 0.64 2.6
Half-hourly 5.9× 10−3 0.164 0.022 0.379 0.290 1.246 1.185 0.19 0.67 2.4

This translates to ET being twice as significant as GPP in
the cost function (Eq. 2). The main reason for ET dominat-
ing GPP is that ET is more erratic in comparison to GPP and
the residuals of ET (divided by the mean value) are larger
than the residuals of GPP. The daily and half-hourly tunings
themselves work as intended as they lower the correspond-
ing cost function value. It is noteworthy to mention that the
G2 component gets its lowest value for both validation peri-
ods with the half-hourly parametrisation even thoughG2 cal-
culates GPP errors on a daily scale.

Lastly, we examine how the algorithm and cost functions
have performed. The best parameter set (the lowest cost func-
tion value) for a given cost function, in each of the three dif-
ferent periods (HC, HV, SV), is the same as that used in the
corresponding tuning process. For example the lowest value
for cf1 (the cost function for seasonal tuning) in Sodankylä
validation period (0.07) coincides with the seasonally tuned
parameters. This is expected as the tuning process aims to
be the “best” parameter value, which reassures us that no
gross mistakes (human errors) have been made. The relation
holds true for every cost function with the exception of cf1 for
Hyytiälä validation period, where the lowest value is reached
with the daily tuned parameters (we note that the absolute
difference between daily and seasonally tuned parameters is
small). Hence we can confidently state that the algorithm and
cost functions have performed as intended, especially since
the optimised parameters work for Sodankylä as well, where
no optimisation (besides the site-specific maximum of LAI)
was applied.

4.3 Time series

The overall structure of the model time series was not
affected by the parametrisations obtained with different

tunings (Figs. 2 and 3). Some time series characteris-
tics have been enhanced and others reduced but the tim-
ing of the peaks and dips in GPP and ET are the same
as before. The corresponding RMSE and bias estimates
are given in Table 6. In comparison we estimated the
PRELES model biases for Hyytiälä from Fig. 5 in Pel-
toniemi et al. (2015b). These estimates give a bias of
0.81× 10−6 kg m−2 s−1 (0.07 mm m−2 day−1) for ET and
−1.45× 10−7 mol [CO2] m−2 s−1 (−0.15 g(C) m−2 day−1)
for GPP. Additionally, the coefficient of determination (r2)
for GPP in Hyytiälä is in the range of 0.74–0.76 for all
tunings, whereas the values reported in literature range
from 0.68 (Trusilova et al., 2004) to 0.96 (Peltoniemi
et al., 2015b) with most above 0.9 (Aalto et al., 2004; Du-
ursma et al., 2009). For additional comparisons see also
Abramowitz et al. (2007). Note that our estimates are cal-
culated using only values from the beginning of May to the
end of September.

The best seasonal performance was obtained by seasonal
tuning as we previously noted from the cost function com-
ponents (Table 5). Even though the optimisation is done on
the seasonal level, especially the GPP cycle is noticeably im-
proved from that generated by the default parameters. This
tuning also gives rise to the most stable (least fluctuating)
water use efficiency (WUE), when calculated as a pointwise
ratio of GPP and ET. We use WUE here only as a diagnostic
variable to examine the balance between the GPP and ET.

When compared to the seasonal tuning, the daily tuning
is worse on the seasonal scale and lowers both the ET and
GPP cycles. WUE follows the observations better but starts
to give rise to some fluctuation. With half-hourly tuning, this
behaviour is further enhanced and especially ET is lowered
to too low levels, which manifests the high WUE values. The
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Table 6. RMSE and bias of ET and GPP calculated from half-hourly data for first two summers of the validation period for Hyytiälä
(corresponding to Fig. 2) and last two summers of the validation period for Sodankylä (corresponding to Fig. 3).

ET (kg m−2 s−1) GPP (mol (CO2) m−2 s−1)

Hyytiälä Sodankylä Hyytiälä Sodankylä

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

Default 2.03× 10−5
−1.31× 10−6 2.27E× 105 2.31× 10−6 3.09× 10−6 8.77× 10−7 3.16× 10−6

−9.19× 10−7

Seasonal 2.37× 10−5
−4.32× 10−6 2.35× 10−5 1.09× 10−6 3.10× 10−6

−2.00× 10−7 2.89× 10−6
−5.97× 10−7

Daily 2.03× 10−5
−0.74× 10−6 2.06× 10−5 5.00× 10−6 3.06× 10−6

−1.07× 10−7 2.74× 10−6
−4.57× 10−7

Half-hourly 1.69× 10−5 2.77× 10−6 2.04× 10−5 7.14× 10−6 2.94× 10−6 3.39× 10−7 2.67× 10−6
−2.79× 10−7

Figure 2. Hyytiälä 7-day-running mean time series for different tunings for the first two summers of the validation period. Solid black line
represents the observations.

worsening in the model time series with daily and half-hourly
tunings are explained by biases in the diurnal cycle.

4.4 Diurnal cycles

Average diurnal cycles with different parametrisations
(Fig. 4) show that modelled night-time ET values are too low
when compared to the observed and this behaviour was not
affected by the tunings. Low night-time values are compen-
sated by too high midday values in the default and seasonal
tuning so that the average daily and seasonal values are on

an acceptable level. For the daily and half-hourly tuning, the
algorithm lowers the daytime values, which results in too
low average daily and half-hourly values. It is noteworthy
to mention that with the default setting we get too low GPP
for Hyytiälä but too high GPP for Sodankylä. The unrealistic
wintertime and the biased night-time ET values actually have
the same origin. Since we do not have the coupling from the
land surface model (LSM) back to the atmosphere, we get an
erroneous energy balance as we lose the energy released by
condensation.
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Figure 3. Sodankylä 7-day-running mean time series for different tunings for the last two summers of the validation period. Solid black line
represents the observations.

Disregarding the default parametrisation we notice that
seasonal parametrisation show the highest values, daily in
the middle and half-hourly show the lowest values. Daily
parametrisation reproduces the observations for average di-
urnal cycle better than the others in every occasion except the
GPP for Sodankylä, where half-hourly tuning is better (veri-
fied by pointwise RMSE from the average diurnal cycle). We
also notice that Sodankylä daily patterns, and to some ex-
tent Hyytiälä as well, are slightly out of phase. Our current
understanding is that this is (at least partly) due to a slightly
misaligned sensor (which can cause significant errors on high
latitudes), measuring radiation fluxes. Fortunately this affects
mainly the cost function for half-hourly tuning since it is the
only one operating on the densest half-hourly timescale.

4.5 Dry event

Dry period in the summer 2006 can be clearly located by the
massive drawdown in observed GPP, and to a lesser extent in
ET, at Hyytiälä (Fig. 2). In a closer look at this event (Fig. 5)
it is evident that none of our parametrisation schemes were
able to capture it correctly. As it was with the time series,

the overall structure of the daily time series during this event
remains the same (there are no divergent aspects in the model
output between the different tunings).

During the drought event (defined here as 31 July–15 Au-
gust 2006), the soil moisture is on average 27 % lower for
default, daily and half-hourly tuning and 40 % lower for sea-
sonal tuning when compared to the corresponding values
from other years – seasonal tuning has the lowest overall
soil moisture. During this event the modelled soil moisture
decreases monotonically for all tunings and reaches the low-
est values on 13 August, after which it starts to rise. Dur-
ing the period the modelled ET and GPP are predominantly
higher than the observations. WUE on the other hand fol-
lows the “observations” remarkably well and deviates from
the observed only towards the end of the event when mod-
elled ET drops to near-zero values, coinciding with the low-
est modelled soil moisture values. Gao et al. (2016) exam-
ined deviation in the dependencies of GPP and ET to vapour
pressure deficit (VPD) between model and observation re-
sults under the most severe soil moisture stress conditions at
the end of the prolonged period of soil water scarcity (that
occurred in 2006). This can be attributed to the lack of ex-
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Figure 4. Average diurnal cycle from May to September for the validation period.

plicit dependence of the modelled stomatal conductance on
the atmospheric humidity.

5 Conclusions

Initially we tuned the model to produce near-measured sea-
sonal ET, GPP and especially maximum LAI to enhance
the vegetation transpiration and to emphasise the response
to precipitation. This was done successfully with seasonal
tuning in the hopes of bringing forth the underlying model
responses to dryness. With the consecutive daily and half-
hourly tunings, we managed to improve the average diurnal
cycles of both ET and GPP, but failed in reproducing the low
ET and GPP levels during the dry event in 2006. Effectively
we first (seasonal tuning) transferred water from soil mois-
ture into (too high levels of) ET, and later (with daily and
half-hourly tunings) transferred some of it back.

In addition to the maximum LAI (1max) and maximum
carboxylation rate (VC,max), the most effective parameters
in the seasonal tuning were the fraction of soil moisture
above which transpiration is not affected by soil moisture
stress (wtsp) and the critical fraction of field capacity above
which fast drainage occurs for soil water content (wdr). The

reduction in ET and GPP was mostly accounted for by lower-
ing the approximate ratio of leaf internal CO2 concentration
to external CO2 (fC3), which reduces the amount of carbon
available for photosynthesis. For daily tuning ET was further
reduced by the increase of the fraction of precipitation inter-
cepted by canopy (pint) and lower relative humidity fraction
(whum – air humidity is based on soil dryness).

Despite the fact that we were unable to enhance the dry
response of the model, we are confident in saying that the
algorithm itself worked well and performed as intended with
the daily tuning providing the most reduction in model–data
mismatch. We optimised 12 parameters simultaneously (with
daily and half-hourly tunings) using eight fairly short chains
(8000 samples). With daily tuning the resulting estimates are
well matured, but with half-hourly tuning the parameter de-
viations are larger (which is probably due modelling ineffi-
ciencies and noise in measurements). Nevertheless, all op-
timisation procedures worked well with regard to what was
optimised (seasonality, daily averages or diurnal cycle).

Recently, Knauer et al. (2015) found canopy conductance
formulation to be a key factor in prescribing the transfer of
carbon and water between terrestrial biosphere and the lower
atmosphere. Additionally, Gao et al. (2016) found that during
a prolonged period of soil water scarcity, the lack of explicit
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Figure 5. Daily averages for ET, GPP and WUE on a dry event in 2006 for Hyytiälä.

dependence of the stomatal conductance on the atmospheric
humidity is one of the contributing factors to this issue. Fur-
ther studies into enhancing the dry response in JSBACH are
needed and these studies should reflect these latest findings.

6 Data availability

The measurement data required to run and tune the
model can be procured from the FLUXNET database
(doi:10.17616/R36K9X). The JSBACH model is available to
the scientific community under a version of the Max Planck
Institute for Meteorology Software License Agreement (http:
//www.mpimet.mpg.de/en/science/models/license/). For any
questions regarding the simulations data, we encourage you
to contact the author at jarmo.makela@fmi.fi.
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Appendix A: Parametric equations within JSBACH

In this Appendix we present the main equations that the pa-
rameters in this study affect.

A1 Logistic Growth Phenology model

The parameters from the LoGro-P model, which are of inter-
est here, are mainly used to determine the spring event for
JSBACH. The maximum all-sided leaf area index (1max) is
also part of this model; hence, we introduce this first and then
deal with the spring event. 1max is used to calculate LAI at
each time step by a logistic equation (Eq. A1). Here k is the
growth and p the shedding rate, both of which further depend
on temperature and soil moisture.

d1
dt
= k1

(
1−

1

1max

)
−p1 (A1)

To determine the date of the spring event, we first introduce
a few additional variables, namely, the heat sum (ST (d)),
the number of chill days (C(d)) and the critical heat
sum (Scrit(d)). Also T (d) denotes the mean temperature at
day d.

ST (d)=

d∑
d ′=d0

max
(
T (d ′)− Talt,0

)
(A2)

Heat sum ST (d) cumulates the amount of “heat” above the
parameter Talt after the previous growing season. The actual
starting date d0 of the summation need not be known since it
is enough to start the summation “reasonably late” after the
last growth season.

C(d)=

d∑
d ′=da

H (Talt− T (d)) (A3)

The number of chill days is calculated as the number of days
when the mean temperature is below Talt. Here H() denotes
the Heaviside step function and the summation starts at the
day (da) of the last autumn event.

Scrit(d)= Smin+ Srangee
−C(d)/Cdecay (A4)

The critical heat sum (Scrit) decreases as the number of chill
days C(d) increases. The spring event happens when

ST (d)≥ Scrit(d). (A5)

Pseudo soil temperature (Ts(t)) at time t is calculated as
an average air temperature (T ) with an exponential memory
loss (Tps). Pseudo soil temperature is used in determining the
autumn event (when it falls below a certain threshold). In the
equation N is the normalisation constant and τ is the length
of a time step.

Ts(t)=
1
N

t∑
n=−∞

T (n)e
−(t−n) τ

Tps (A6)

A2 Photosynthesis

The Farquhar model is based on the observation that the as-
similation rate in the chloropast is limited either by the car-
boxylation rate (VC) or the transport rate (JE) of two elec-
trons freed during the photoreaction. The total rate of carbon
fixationA is given by the following equation, whereRd is the
dark respiration:

A=min(VC,JE)−Rd. (A7)

Oxygenation of the Rubisco molecule reduces the carboxy-
lation rate, which is given as

VC = VC,max
Ci−0∗

Ci+KC (1+Oi/KO)
. (A8)

Here Ci and Oi are the leaf internal CO2 and O2 concen-
trations, 0? is the CO2 compensation point, KC and KO are
Michaelis–Menten constants parametrising the dependence
on CO2 and O2 concentrations. Furthermore, leaf internal
CO2 concentration depends on the external concentration CE
by

Ci = fC3CE. (A9)

Likewise the electron transport rate is given as

JE = J (I)
Ci−0∗

4(Ci+ 20∗)
. (A10)

Here J (I) is a function of radiation intensity I in the pho-
tosynthetically active band, the maximum electron transport
rate Jmax and the quantum efficiency for photon capture αq.

J (I)= Jmax
αqI√

J 2
max+α

2
qI

2
(A11)

A3 Soil water

In JSBACH, the soil water budget is based on several reser-
voirs (skin, soil, bare soil, rain intercepted by canopy, etc.)
and the different formulations are plentiful. We present here
only the most crucial of these. Changes in soil water (ws)
due to rainfall (R), evapotranspiration (ET), snowmelt (M),
surface runoff (Rs) and drainage (D) are calculated with a
geographically varying maximum field capacity (wfc).

ρ
∂ws

∂t
= (1−pint)R+ET+M −Rs−D (A12)

The interception parameter (pint) also affects the amount of
water intercepted by vegetation and bare soil that further af-
fects evaporation, etc. The skin reservoir is limited by wskin
and excess water is transferred to soil water. Likewise when
the soil water content (in relation to maximum field capac-
ity) is greater than parameter wdr, the excess water is rapidly
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drained (in addition to the limited drainage below this thresh-
old).

Evaporation from wet surfaces (Ews) depends on air den-
sity (ρ), specific humidity (qa), saturation-specific humid-
ity (qs) at surface temperature (Ts) and pressure (ps) and
aerodynamic resistance (ra=Ch|vh|

−1; these are heat trans-
fer coefficient and horizontal velocity).

Ews = ρ
qa− qs (Ts,ps)

ra
(A13)

Transpiration from vegetation (Tv) is likewise formulated
but additionally depends on the stomatal resistance of
canopy (r).

Tv = ρ
qa− qs (Ts,ps)

ra+ r
(A14)

The stomatal resistance is given as a minimal stomatal re-
sistance of the canopy without water stress (rmin, depends
on photosynthetically active radiation and LAI) divided by
a water stress factor (fws). That is r = rmin/fws. The water
stress factor depends on how much water is in the soil in
relation to the maximum field capacity (wf=ws/wfc) when
compared to the limit when transpiration is no longer af-
fected by soil moisture stress (wtsp) and the permanent wilt-
ing point (wpwp).

fws =


1 wf ≥ wtsp

wf−wpwp

wtsp−wpwp
wpwp ≤ wf ≤ wtsp

0 wf ≤ wpwp

(A15)

Evaporation from dry bare soil (Es) is similarly defined as

Es = ρ
qa−hqs (Ts,ps)

ra
(A16)

Here h is relative humidity at the surface relative to soil dry-
ness:

h=max
[
whum (1− cos(πwf)) ,min

(
1,

qa

qs (Ts,ps)

)]
.

(A17)

The total evapotranspiration is a weighted average of Ews,
Tv and Es, where the weights are based on, e.g., fill levels of
reservoirs (similar to wf above) and vegetative fraction of the
grid cell (vegmax).
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