Articles | Volume 23, issue 6
https://doi.org/10.5194/npg-23-435-2016
https://doi.org/10.5194/npg-23-435-2016
Research article
 | 
28 Nov 2016
Research article |  | 28 Nov 2016

Parameterization of stochastic multiscale triads

Jeroen Wouters, Stamen Iankov Dolaptchiev, Valerio Lucarini, and Ulrich Achatz

Related authors

Crucial role of obliquely propagating gravity waves in the quasi-biennial oscillation dynamics
Young-Ha Kim, Georg Sebastian Voelker, Gergely Bölöni, Günther Zängl, and Ulrich Achatz
Atmos. Chem. Phys., 24, 3297–3308, https://doi.org/10.5194/acp-24-3297-2024,https://doi.org/10.5194/acp-24-3297-2024, 2024
Short summary
Reappraising the appropriate calculation of a common meteorological quantity: potential temperature
Manuel Baumgartner, Ralf Weigel, Allan H. Harvey, Felix Plöger, Ulrich Achatz, and Peter Spichtinger
Atmos. Chem. Phys., 20, 15585–15616, https://doi.org/10.5194/acp-20-15585-2020,https://doi.org/10.5194/acp-20-15585-2020, 2020
Short summary
Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, upper Indus Basin
Shabeh Hasson, Jürgen Böhner, and Valerio Lucarini
Earth Syst. Dynam., 8, 337–355, https://doi.org/10.5194/esd-8-337-2017,https://doi.org/10.5194/esd-8-337-2017, 2017
Short summary
The impact of oceanic heat transport on the atmospheric circulation
M.-A. Knietzsch, A. Schröder, V. Lucarini, and F. Lunkeit
Earth Syst. Dynam., 6, 591–615, https://doi.org/10.5194/esd-6-591-2015,https://doi.org/10.5194/esd-6-591-2015, 2015
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary

Cited articles

Chekroun, M. D., Liu, H., and Wang, S.: Approximation of Stochastic Invariant Manifolds, SpringerBriefs in Mathematics, Springer International Publishing, 2015a.
Chekroun, M. D., Liu, H., and Wang, S.: Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations, SpringerBriefs in Mathematics, Springer International Publishing, 2015b.
Demaeyer, J. and Vannitsem, S.: Stochastic parameterization of subgrid-scale processes in coupled ocean-atmosphere systems: Benefits and limitations of response theory, 2016.
Dolaptchiev, S. I., Achatz, U., and Timofeyev, I.: Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation, Theor. Comp. Fluid Dyn., 27, 297–317, https://doi.org/10.1007/s00162-012-0270-1, 2013a.