Articles | Volume 23, issue 6
https://doi.org/10.5194/npg-23-391-2016
https://doi.org/10.5194/npg-23-391-2016
Research article
 | 
04 Nov 2016
Research article |  | 04 Nov 2016

A local particle filter for high-dimensional geophysical systems

Stephen G. Penny and Takemasa Miyoshi

Related authors

The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model
S. G. Penny, E. Kalnay, J. A. Carton, B. R. Hunt, K. Ide, T. Miyoshi, and G. A. Chepurin
Nonlin. Processes Geophys., 20, 1031–1046, https://doi.org/10.5194/npg-20-1031-2013,https://doi.org/10.5194/npg-20-1031-2013, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
Nonlin. Processes Geophys., 32, 167–187, https://doi.org/10.5194/npg-32-167-2025,https://doi.org/10.5194/npg-32-167-2025, 2025
Short summary
Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
Nonlin. Processes Geophys., 32, 117–130, https://doi.org/10.5194/npg-32-117-2025,https://doi.org/10.5194/npg-32-117-2025, 2025
Short summary
Bridging Data Assimilation and Control: Ensemble Model Predictive Control for High-Dimensional Nonlinear Systems
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-595,https://doi.org/10.5194/egusphere-2025-595, 2025
Short summary
Evaluation of Effectiveness of Intervention Strategy in Control Simulation Experiment through Comparison with Model Predictive Control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-26,https://doi.org/10.5194/npg-2024-26, 2024
Revised manuscript accepted for NPG
Short summary
Long-window hybrid variational data assimilation methods for chaotic climate models tested with the Lorenz 63 system
Philip David Kennedy, Abhirup Banerjee, Armin Köhl, and Detlef Stammer
EGUsphere, https://doi.org/10.48550/arXiv.2403.03166,https://doi.org/10.48550/arXiv.2403.03166, 2024
Short summary

Cited articles

Abarbanel, H. D. I., Creveling, D. R., Farsian, R., and Kostuk, M.: Dynamical State and Parameter Estimation, SIAM J. Appl. Dyn. Syst., 8, 1341–1381, https://doi.org/10.1137/090749761, 2009.
Ades, M. and van Leeuwen, P. J.: An exploration of the equivalent weights particle filter, Q. J. Roy. Meteorol. Soc., 139, 820–840, 2013.
Anderson, J.: An ensemble adjustment kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.
Atkins, E., Morzfeld, M., and Chorin, A. J.: Implicit Particle Methods and their Connection with Variational Data Assimilation, Mon. Weather Rev., 141, 1786–1803, 2013.
Bengtsson, T., Snyder, C., and Nychka, D.: Toward a nonlinear ensemble filter for high-dimensional systems, J. Geophys. Res., 108, STS2.1–STS2.10, 2003.
Download
Short summary
Particle filters in their basic form have been shown to be unusable for large geophysical systems because the number of required particles grows exponentially with the size of the system. We have applied the ideas of localized analyses at each model grid point and use ensemble weight smoothing to blend each local analysis with its neighbors. This new local particle filter (LPF) makes large geophysical applications tractable for particle filters and is competitive with a popular EnKF alternative.
Share