Articles | Volume 22, issue 1
https://doi.org/10.5194/npg-22-87-2015
https://doi.org/10.5194/npg-22-87-2015
Research article
 | 
03 Feb 2015
Research article |  | 03 Feb 2015

Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance

C. A. L. Pires and R. A. P. Perdigão

Related authors

Probabilistic modelling of the dependence between rainfed crops and drought hazard
Andreia F. S. Ribeiro, Ana Russo, Célia M. Gouveia, Patrícia Páscoa, and Carlos A. L. Pires
Nat. Hazards Earth Syst. Sci., 19, 2795–2809, https://doi.org/10.5194/nhess-19-2795-2019,https://doi.org/10.5194/nhess-19-2795-2019, 2019
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary

Cited articles

Abramov, R., Majda, A. J., and Kleeman, R.: Information theory and predictability for low-frequency variability, J. Atmos. Sci., 62, 65–87, https://doi.org/10.1175/JAS-3373.1, 2005.
Almeida, L. B.: MISEP – linear and nonlinear ICA based on mutual information, J. Mach. Learn. Res., 4, 1297–1318, 2003.
Almeida, L. B.: Nonlinear Source Separation, Synthesis Lectures on Signal Processing, Morgan and Claypool Publishers, San Rafael, California (USA), 114 pp., https://doi.org/10.2200/S00016ED1V01Y200602SPR002, 2006.
Bailey, R. A.: Orthogonal partitions for designed experiments, Design Code Cryptogr., 8, 45–77, 1996.
Ball, F. K.: Energy transfer between external and internal gravity waves, J. Fluid Mech., 19, 465–478, 1964.
Download
Short summary
Non-Gaussian joint PDFs and Shannon negentropies allow for nonlinear correlations and synergetic interaction information among random variables. Third-order cross-cumulants (triadic correlations -- TCs) under pair-wise (total or partial) independence are maximized on projections and orthogonal rotations of the full PDF. Fourier analysis allows decomposing TCs as wave resonant triads working as non-Gaussian sources of dynamical predictability. An illustration is given in a minimal fluid model.