Articles | Volume 22, issue 5
https://doi.org/10.5194/npg-22-545-2015
https://doi.org/10.5194/npg-22-545-2015
Review article
 | 
23 Sep 2015
Review article |  | 23 Sep 2015

Review: visual analytics of climate networks

T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski

Related authors

A network-based detection scheme for the jet stream core
Sonja Molnos, Tarek Mamdouh, Stefan Petri, Thomas Nocke, Tino Weinkauf, and Dim Coumou
Earth Syst. Dynam., 8, 75–89, https://doi.org/10.5194/esd-8-75-2017,https://doi.org/10.5194/esd-8-75-2017, 2017

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary

Cited articles

Abello, J. and Pogel, A.: Graph Partitions and Concept Lattices, Discrete Methods in Epidemiology, AMS-DIMACS Series, 70, 115–138, 2006.
Abello, J., Hadlak, S., Schumann, H., and Schulz, H.-J.: A Modular Degree-of-Interest Specification for the Visual Analysis of Large Dynamic Networks, IEEE T. Visual. Comput. Graph., 20, 337–350, 2014.
Adar, E.: GUESS: A Language and Interface for Graph Exploration, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), ACM, New York, NY, USA, 2006.
Aigner, W., Miksch, S., Schumann, H., and Tominski, C.: Visualization of Time-Oriented Data, Springer, London, UK, 2011.
Albert, R. and Barabasi, A. L.: Statistical Mechanics of Complex Networks, Rev. Modern Phys., 74, 47–97, 2002.
Short summary
The paper reviews the available visualisation techniques and tools for the visual analysis of geo-physical climate networks. The results from a questionnaire with experts from non-linear physics are presented, and the paper surveys recent developments from information visualisation and cartography with respect to their applicability for visual climate network analytics. Several case studies based on own solutions illustrate the potentials of state-of-the-art network visualisation technology.