Articles | Volume 22, issue 4
https://doi.org/10.5194/npg-22-377-2015
https://doi.org/10.5194/npg-22-377-2015
Research article
 | 
10 Jul 2015
Research article |  | 10 Jul 2015

Nonstationary time series prediction combined with slow feature analysis

G. Wang and X. Chen

Related authors

Cross-scale causal information flow from El Niño Southern Oscillation to precipitation in eastern China
Yasir Latif, Kaiyu Fan, Geli Wang, and Milan Palus
EGUsphere, https://doi.org/10.5194/egusphere-2024-400,https://doi.org/10.5194/egusphere-2024-400, 2024
Short summary
East Asia Reanalysis System (EARS)
Jinfang Yin, Xudong Liang, Yanxin Xie, Feng Li, Kaixi Hu, Lijuan Cao, Feng Chen, Haibo Zou, Feng Zhu, Xin Sun, Jianjun Xu, Geli Wang, Ying Zhao, and Juanjuan Liu
Earth Syst. Sci. Data, 15, 2329–2346, https://doi.org/10.5194/essd-15-2329-2023,https://doi.org/10.5194/essd-15-2329-2023, 2023
Short summary
On the interconnections among major climate modes and their common driving factors
Xinnong Pan, Geli Wang, Peicai Yang, Jun Wang, and Anastasios A. Tsonis
Earth Syst. Dynam., 11, 525–535, https://doi.org/10.5194/esd-11-525-2020,https://doi.org/10.5194/esd-11-525-2020, 2020
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary

Cited articles

Berkes, P. and Wiskott, L.: Slow feature analysis yields a rich repertoire of complex cell properties, J. Vision, 5, 579–602, 2005.
Boucharel, J., Dewitte, B., Garel, B., and du Penhoat, Y.: ENSO's non-stationary and non-Gaussian character: the role of climate shifts, Nonlin. Processes Geophys., 16, 453–473, https://doi.org/10.5194/npg-16-453-2009, 2009.
Brasseur, G. and Granier, C.: Mount Pinatubo aerosols, chlorofluorocarbons and ozone depletion, Science, 257, 1239–1242, 1992.
Casdagli, M.: Nonlinear prediction of chaotic time series, Phys. D., 35, 335–356, 1989.
Farmer, J. D. and Sidorowich, J.: Predicting chaotic time series, Phys. Rev. E., 59, 845–848, 1989.
Download
Short summary
This paper presents a new technique of combining the driving force of a time series obtained using the slow feature analysis (SFA) approach, then introducing the driving force into a predictive model to predict nonstationary time series. It could be considered to be a data-driven attempt to make progress in predicting nonstationary climatic time series and in better understanding the climate causality research from observed climate data.