Articles | Volume 22, issue 2
https://doi.org/10.5194/npg-22-233-2015
https://doi.org/10.5194/npg-22-233-2015
Research article
 | 
29 Apr 2015
Research article |  | 29 Apr 2015

Data assimilation experiments using diffusive back-and-forth nudging for the NEMO ocean model

G. A. Ruggiero, Y. Ourmières, E. Cosme, J. Blum, D. Auroux, and J. Verron

Related authors

Ensemble analysis and forecast of ecosystem indicators in the North Atlantic using ocean colour observations and prior statistics from a stochastic NEMO–PISCES simulator
Mikhail Popov, Jean-Michel Brankart, Arthur Capet, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 20, 155–180, https://doi.org/10.5194/os-20-155-2024,https://doi.org/10.5194/os-20-155-2024, 2024
Short summary
Regional mapping of energetic short mesoscale ocean dynamics from altimetry: performances from real observations
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023,https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Snow data assimilation for seasonal streamflow supply prediction in mountainous basins
Sammy Metref, Emmanuel Cosme, Matthieu Le Lay, and Joël Gailhard
Hydrol. Earth Syst. Sci., 27, 2283–2299, https://doi.org/10.5194/hess-27-2283-2023,https://doi.org/10.5194/hess-27-2283-2023, 2023
Short summary
CrocO_v1.0: a particle filter to assimilate snowpack observations in a spatialised framework
Bertrand Cluzet, Matthieu Lafaysse, Emmanuel Cosme, Clément Albergel, Louis-François Meunier, and Marie Dumont
Geosci. Model Dev., 14, 1595–1614, https://doi.org/10.5194/gmd-14-1595-2021,https://doi.org/10.5194/gmd-14-1595-2021, 2021
Short summary
A multiscale ocean data assimilation approach combining spatial and spectral localisation
Ann-Sophie Tissier, Jean-Michel Brankart, Charles-Emmanuel Testut, Giovanni Ruggiero, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 15, 443–457, https://doi.org/10.5194/os-15-443-2019,https://doi.org/10.5194/os-15-443-2019, 2019
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary

Cited articles

Abarbanel, H. D. I., Kostuk, M., and Whartenby, W.: Data assimilation with regularized nonlinear instabilities, Q. J. Roy. Meteorol. Soc., 136, 769–783, https://doi.org/10.1002/qj.600, https://doi.org/10.1002/qj.600, 2010.
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003.
Anthes, R. A.: Data Assimilation and Initialization of Hurricane Prediction Models, J. Atmos. Sci., 31, 702–719, https://doi.org/10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2, 1974.
Auroux, D.: The back and forth nudging algorithm applied to a shallow water model, comparison and hybridization with the 4D-VAR, Int. J. Numer. Methods Fluids, 61, 911–929, 2009.
Auroux, D. and Blum, J.: Back and forth nudging algorithm for data assimilation problems, C. R. Acad. Sci. Paris, Ser. I, 340, 873–878, 2005.
Download