
Nonlin. Processes Geophys., 22, 233–248, 2015

www.nonlin-processes-geophys.net/22/233/2015/

doi:10.5194/npg-22-233-2015

© Author(s) 2015. CC Attribution 3.0 License.

Data assimilation experiments using diffusive back-and-forth

nudging for the NEMO ocean model

G. A. Ruggiero1, Y. Ourmières2, E. Cosme3, J. Blum1, D. Auroux1, and J. Verron4

1Université de Nice Sophia-Antipolis/LJAD, Nice, France
2Université du Sud Toulon-Var, Aix-Marseille Université, CNRS/INSU, IRD,

Mediterranean Institute of Oceanography (MIO), France
3Université Joseph Fourier/LGGE, Grenoble, France
4CNRS/LGGE, Grenoble, France

Correspondence to: G. A. Ruggiero (giovanni.ruggiero@unice.fr)

Received: 14 May 2014 – Published in Nonlin. Processes Geophys. Discuss.: 16 July 2014

Revised: 8 March 2015 – Accepted: 26 March 2015 – Published: 29 April 2015

Abstract. The diffusive back-and-forth nudging (DBFN)

is an easy-to-implement iterative data assimilation method

based on the well-known nudging method. It consists of a se-

quence of forward and backward model integrations, within

a given time window, both of them using a feedback term

to the observations. Therefore, in the DBFN, the nudging

asymptotic behaviour is translated into an infinite number of

iterations within a bounded time domain. In this method, the

backward integration is carried out thanks to what is called

backward model, which is basically the forward model with

reversed time step sign. To maintain numeral stability, the

diffusion terms also have their sign reversed, giving a dif-

fusive character to the algorithm. In this article the DBFN

performance to control a primitive equation ocean model is

investigated. In this kind of model non-resolved scales are

modelled by diffusion operators which dissipate energy that

cascade from large to small scales. Thus, in this article, the

DBFN approximations and their consequences for the data

assimilation system set-up are analysed. Our main result is

that the DBFN may provide results which are comparable to

those produced by a 4Dvar implementation with a much sim-

pler implementation and a shorter CPU time for convergence.

The conducted sensitivity tests show that the 4Dvar profits

of long assimilation windows to propagate surface informa-

tion downwards, and that for the DBFN, it is worth using

short assimilation windows to reduce the impact of diffusion-

induced errors. Moreover, the DBFN is less sensitive to the

first guess than the 4Dvar.

1 Introduction

In data assimilation, an interesting tool is the Kalman–Bucy

filter (Kalman and Bucy, 1961), where a non-linear differ-

ential equation of the Riccati type was derived for the co-

variance matrix of the optimal filtering error, the solution

of which completely specifies the optimal filter for linear

quadratic problems. A few years later, Luenberger (1966,

1971) defined an observer for reconstructing the state of

an observable deterministic linear system from exact mea-

surements of the output. This Luenberger observer has been

called an “asymptotic estimator”, since under linearity and

observability hypothesis the estimator error converges to zero

for time tending to infinity (Gelb et al., 1974; Bonnans and

Rouchon, 2005). Its advantage compared to Kalman filter-

ing is that it does not require any information on the various

covariance matrices but, as was pointed out in Luenberger

(1966), the Kalman–Bucy filter appears as a particular Luen-

berger observer which is the optimal least mean square es-

timate of the state in the case of noisy measurements. The

stochastic observer unifies the concepts of deterministic Lu-

enberger observer theory and stochastic Kalman filtering the-

ory as it is explained in Gelb’s book (Gelb et al., 1974) for

instance. Both are useful in practice. It should be mentioned

that the concept of a Luenberger observer has been extended

to non-linear systems, for example in Zeitz (1987).

This Luenberger observer has been rediscovered in the

geophysical literature for atmospheric models under the term
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of nudging (Anthes, 1974; Hoke and Anthes, 1976; Stauf-

fer and Seaman, 1990), which consists in adding a forcing

term on the right-hand side of a given model in order to gen-

tly push (nudge) the solution toward a prescribed value. It

is quite interesting to note that there is no mention of the

link between nudging and the Luenberger observer in the

geophysical literature until the work of Auroux and Blum

(2008). More recently, a comprehensive study on the nudging

method and its variants was produced by Blum et al. (2008)

and Lakshmivarahan and Lewis (2012).

The first appearance of a successful application of nudging

to ocean data assimilation (DA) was in 1992 in a work that

assimilated sea surface height derived from satellite measure-

ments into a quasi-geostrophic layered model (Verron, 1992).

Since then, the method has been successfully applied to sev-

eral oceanographic numerical problems such as the estima-

tion of boundary conditions (Marchesiello et al., 2001; Chen

et al., 2013), downscaling (Li et al., 2012), and other DA

problems (Verron, 1992; Haines et al., 1993; Blayo et al.,

1994; Lewis et al., 1998; Killworth et al., 2001; Thompson

et al., 2006). Concerning applications to DA problems, the

weights given to the model and the observations are generally

not based on any optimality condition, but are rather scalars

or Gaussian-like functions constructed based on physical as-

sumptions or empirical considerations. The appeals of this

method are the simplicity of implementation in complex nu-

merical models, the low computational power required and

the time smoothness of the solution.

The increasing availability of computing power has al-

lowed one to use more advanced data assimilation meth-

ods. In general, these methods use information on the

model statistics and observations errors to weight the model–

observations combination. Two of these methods that are

widely used by prediction centres are the ensemble Kalman

filter – EnKF (Evensen, 1994) – and its variations (Pham,

2001; Hunt et al., 2007), and the four-dimensional variational

method 4Dvar (Le Dimet and Talagrand, 1986; Courtier

et al., 1994). For the first, the numerical costs are due to

the propagation of the ensemble, usually formed by tenths of

members, to calculate the forecast. For the second, the costs

are due to the need for minimising a cost function in a very

large state space (108 variables). This requires several itera-

tions of the minimisation algorithm, which involves several

integrations of the direct and adjoint models.

However, even with the growing interest in these com-

plex techniques built on solid theoretical arguments, nudg-

ing has not been left aside. Recent works have used nudg-

ing along with more advanced methods such as optimal in-

terpolation (Clifford et al., 1997; Wang et al., 2013), EnKF

(Ballabrera-Poy et al., 2009; Bergemann and Reich, 2010;

Lei et al., 2012; Luo and Hoteit, 2012), 4Dvar (Zou et al.,

1992; Stauffer and Bao, 1993; Vidard et al., 2003; Abarbanel

et al., 2010) or particle filters (Luo and Hoteit, 2013; Lingala

et al., 2013) to extract the best of each method. In the par-

ticular case of the hybridisation with the EnKF proposed by

Lei et al. (2012), the resulting algorithm has the advantage of

the dynamical propagation of the covariance matrix from the

EnKF and uses nudging to mitigate problems related to the

intermittence of the sequential approach, which among other

things entails the possible discarding of some observations.

In 2005, Auroux and Blum (2005) revisited the nudging

method and proposed a new observer called back-and-forth

nudging (BFN), because a Luenberger observer is an asymp-

totic observer, and as data assimilation is performed for a fi-

nite time, the convergence of the real state is not yet achieved

at the limited horizon. The BFN consists of a sequence of for-

ward and backward model integrations, both of them using

a feedback term to the observations, as in the direct nudg-

ing. The BFN integrates the direct model backwards in time,

avoiding the construction of the adjoint and/or tangent lin-

ear models needed by 4Dvar. Therefore, it uses only the

fully non-linear model to propagate information forward and

backward in time. The nudging gain, which has an opposite

sign with respect to the forward case, has a double role: push

the model toward observations and stabilise the backward in-

tegration, which is especially important when the model is

not reversible. Back-and-forth algorithms have already been

used in the past for initialisation and four-dimensional data

assimilation (Morel et al., 1971; Talagrand, 1981), but with-

out nudging. In these papers, the authors are just replac-

ing at each observation time the values predicted by the

model for the observed parameters with the observed values;

this method requires the considered system to be reversible,

which is not the case if there exists irreversible dissipation in

the model.

The BFN convergence was proved by Auroux and Blum

(2005) for linear systems of ordinary differential equations

and full observations, by Ramdani et al. (2010) for reversible

linear partial differential equations (wave and Schrödinger

equations), and by Donovan et al. (2010) and Leghtas et al.

(2011) for the reconstruction of quantum states, and was

studied by Auroux and Nodet (2012) for non-linear trans-

port equations. The BFN performance in numerical appli-

cations using a variety of models, including non-reversible

models such as a shallow water (SW) model (Auroux, 2009)

and a multi-layer quasi-geostrophic (LQG) model (Auroux

and Blum, 2008), are very encouraging. Moreover, by using

a simple scalar gain, it produced results comparable to those

obtained with 4Dvar, but with lower computational require-

ments (Auroux, 2009; Auroux et al., 2012).

In this article we present for the first time a BFN ap-

plication to control a primitive equation ocean model. The

numerical model used is NEMO (Madec, 2008), currently

used by the French operational centre, Mercator Océan (http:

//www.mercator-ocean.fr/fre), to produce and deliver ocean

forecasts. The well-known idealised double gyre configura-

tion at eddy-permitting resolution is used. This configuration

has the advantage of being simple from the geometry and

forcing points of view; at the same time, it reproduces most

of the features found in a middle latitude ocean basin.
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The BFN application to control a primitive equation ocean

model represents a new challenge due to the increased model

complexity. Among the differences between NEMO and the

simplified oceanic models used by Auroux and Blum (2008)

and Auroux (2009) stand out the more complex relationship

between the variables in the former since no filtering tech-

nique is used in the derivation of the physical model (except

the Boussinesq approximation which is also considered by

the SW and LQG models), and the inclusion of an equation

for the conservation of the thermodynamical properties. The

latter requires the use of a non-linear state equation to couple

dynamical and thermodynamical variables.

Furthermore, the vertical ocean structure represented by

NEMO is more complex than the vertical ocean structure

represented by the SW and LQG used by Auroux and Blum

(2008) and Auroux (2009). This is because the SW model has

no vertical levels and the LQG was implemented with only 3

layers, while in this article NEMO is configured with 11 ver-

tical layers. In addition, NEMO considers vertical diffusion

processes, mostly ignored by the LQG model. Vertical diffu-

sion plays an important role in maintaining the ocean strati-

fication and meridional overturning circulation, which is di-

rectly related to the transport of heat in the ocean. Moreover

from the practical point of view, the diffusion/viscosity re-

quired to keep the NEMO simulations stable is by far greater

than for the SW or LQG at the same resolution.

These issues call into question the validity of the approx-

imations made by the BFN under realistic conditions. Thus,

our primary objective is to study the possibility of applying

the BFN in realistic models and to evaluate its performance

compared to the 4Dvar. This appears to be the next logical

step before using the BFN to assimilate real data.

This article is organised as follows. In Sect. 2 the BFN

and the 4Dvar are described. Section 3 describes the model

physics and the model set-up. Section 4 discusses some prac-

tical aspects of the backwards integration. Section 5 presents

the BFN and the 4Dvar set-up and the designed data assim-

ilation experiments. Finally, the data assimilation results are

presented in Sect. 6, in which we discuss the impact of the

length of the data assimilation window on the method per-

formances as well as the sensitivity of each method to the

observation network and the initial condition.

2 Data assimilation methods

In this section the back-and-forth nudging (BFN) is intro-

duced and the 4Dvar used to assess the BFN performance is

briefly described.

2.1 The back-and-forth nudging

The conventional nudging algorithm consists in adding a

forcing term (feedback term) to the model equations, pro-

portional to the difference between the data and the model

at a given time. More generally, given a model described by

a set of ordinary equations (or discretised partial differential

equations), nudging consists in adding to them the forcing

term K(xobs−H(x)):

dx

dt
= F(x)+K(xobs−H(x)), (1)

where x represents the state vector, F is the model opera-

tor, H is the observation operator allowing one to compare

the observations xobs(t) to the corresponding system state

H(x), and K is the nudging gain matrix. In this algorithm

the model appears as a weak constraint. The feedback term

changes the dynamical equations and is a penalty term that

forces the state variables to get closer to the observations.

In the linear case, i.e. when F and H may be written as

matrices F and H, and in the absence of noise in the system,

nudging is nothing else than the Luenberger observer (Luen-

berger, 1966). In this case, and assuming that the observabil-

ity of the pair (F,H) holds, there is a class of possible matri-

ces K that, thanks to the pole shifting theorem, guarantees the

estimator convergence when t→∞ (Gelb et al., 1974; Bon-

nans and Rouchon, 2005). This should be one possible ex-

planation for why nudging usually works quite well and the

converged state is not strongly affected by the choice of K.

However, when constructing K (whose unit is s−1), the aim

is to obtain an estimator response faster than the timescale of

the studied processes.

The BFN is an iterative algorithm which sequentially

solves the forward model equations with a feedback term to

the observations (Eq. 1) and the backward model equations

with an opposite sign for the feedback term. The initial con-

dition of the backward integration is the final state obtained

after integration of the forward nudging equation. At the end

of each iteration, a new estimation of the system’s initial state

is obtained. The iterations are carried out until convergence

is reached.

The difference of the BFN with respect to the conventional

nudging is the model integration backward in time. This al-

lows one to recover initial conditions as well as to use more

than once the same observations set. Consequently, the BFN

may be seen as a sub-optimal iterative smoother.

Under the hypothesis of a linear model, a variational inter-

pretation is possible. In this case, if we choose K= kHTR−1,

where R is the observation error covariance matrix, and k is

a scalar, the solution of the forward nudging is a compro-

mise between the minimisation of the system’s energy and

the minimisation of the distance between the data and the

model (Auroux and Blum, 2008).

However, the backward integration is problematic when

the model is diffusive or simply not reversible. In the case

of ocean models, there are two main aspects requiring the

inclusion of diffusion: (i) the control of numerical noise,

and (ii) the modelling of sub-grid-scale processes, i.e. to

parametrise the energy transfer from explicitly resolved to

non-resolved scales. Indeed, diffusion naturally represents a
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source of uncertainty in ocean forecasts, even for the purely

forward model, and has been investigated from the point of

view of optimal control theory in Leredde et al. (1999).

To address the problem of the backward model instabil-

ity in this article, diffusive back-and-forth nudging – DBFN

(Auroux et al., 2011) – is used. In this algorithm the sign of

the diffusion term remains physically consistent and only the

reversible part of the model equations are really solved back-

ward. Practical consequences of this assumption are analysed

in Sect. 4. A similar solution was proposed by Pu et al. (1997)

and Kalnay et al. (2000) to stabilise their quasi-inverse linear

model.

To describe the DBFN algorithm, let us assume that the

time continuous model satisfies dynamical equations of the

form

∂x

∂t
= F̃(x)+ ν1x for 0< t < T, (2)

with an initial condition x(0)= x0, where F̃ denotes the

non-linear model operator without diffusive terms, ν is a dif-

fusion coefficient and 1 represents a diffusion operator. If

nudging is applied to the forward system (Eq. 2), it gives

∂xk

∂t
= F̃(xk)+ ν1xk +K(xobs−H(xk))

xk(0)= x̃k−1(0), 0< t < T, (3)

where k ∈ N≥1 stands for iterations and x̃0(0) is a given ini-

tial guess. Nudging applied to the backward system with the

reversed diffusion sign gives

∂x̃k

∂t
= F̃ (̃xk)− ν1x̃k −K′(xobs−H(̃xk))

x̃k(T )= xk(T ), T > t > 0. (4)

The system composed of Eqs. (3) and (4) is the basis of the

DBFN algorithm. They are iterated until convergence.

Therefore, one important aspect of the DBFN algorithm is

the convergence criterion. Ideally, at convergence the nudg-

ing term should be null or small comparable to the other

equation terms. Otherwise, when the nudging is switched off,

which is the case in the forecast phase, the system may return

to a state close to the background state or to a state which is

not consistent with the one at convergence. The convergence

is calculated as

‖ xk(t = 0)− xk−1(t = 0) ‖

‖ xk−1(t = 0) ‖
≤ ε, (5)

where ‖ • ‖ is the L2 norm, and the choice for ε = 0.005 is

based on sensitivity tests (not presented in this article).

Data assimilation is the ensemble of techniques combin-

ing the mathematical information provided by the equations

of the model and the physical information given by the ob-

servations in order to retrieve the state of a flow. In order

to show that the DBFN algorithm achieves this double ob-

jective, let us give a formal explanation of the way DBFN

proceeds. If K′ =K and the forward and backward limit tra-

jectory are equal, i.e x̃∞ = x∞, then taking the sum between

Eqs.(3) and (4) shows that x∞ satisfies the model equations

without diffusion:

∂x∞

∂t
= F̃(x∞), (6)

while taking the difference between Eqs. (3) and (4) shows

that x∞ satisfies the Poisson equation

1x∞ =−
K

ν
(xobs−H(x∞)), (7)

which represents a smoothing process on the observations

for which the degree of smoothness is given by the ratio ν
K

(Auroux et al., 2011). Equation (7) corresponds, in the case

whereH is a matrix H and K= kHTR−1, to the Euler equa-

tion of the minimisation of the following cost function

J (x)= k < R−1(xobs−Hx), (8)

(xobs−Hx) >+ν

∫
�

‖ ∇x‖2,

where the first term represents the quadratic difference from

the observations and the second one is a first-order Tikhonov

regularisation term over the domain of resolution�. The vec-

tor x∞, a solution of Eq. (7), is the point where the minimum

of this cost function is reached. It is shown in Sect. 6.1 that at

convergence the forward and backward trajectories are very

close, which justifies this qualitative justification of the algo-

rithm.

The description of the used K matrix is given in Sect. 5.1.

2.2 Four-dimensional variational method – 4Dvar

Variational methods minimise a cost function that measures

the distance between the estimated state and the available ob-

servations. Let us assume that observations are available at

every instant (ti)1≤i≤N . Given a first guess xb of the initial

state, the 4Dvar algorithm will find an optimal initial condi-

tion that minimises the distance between the model trajectory

and the observations in a given assimilation window. This

optimal state is found by minimising the following cost func-

tion:

J (x0)=
1

2
(x0− x

b)TB−1(x0− x
b) (9)

+
1

2

N∑
i=0

(Hi[M0,i(x0)] − yi)
TR−1

i (Hi[M0,i(x0)] − yi),

where B is the background error covariance matrix andM0,i

represents the model integration from time t0 to time ti . Ri ,

Hi and yi are the observation error covariance matrix, the

observation operator and the available observations at time

ti , respectively.
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The optimal initial state is found by solving

∇J (xa(t0))= 0. (10)

The calculation of this gradient is done using the adjoint

method proposed by Lions (1971) and brought to the me-

teorological context by Le Dimet and Talagrand (1986).

Since for ocean applications M and H are non-linear, we

used the incremental approach proposed by Courtier et al.

(1994), which consists in solving a sequence of linearised

quadratic problems, expecting this sequence to converge to

the solution of the problem given by Eqs. (9) and (10). In this

case, the cost function will not be minimised with respect to

the initial state, but with respect to an increment δx0 defined

by x0 = x
b
+ δx0. The operators H or M are linearised in a

neighbourhood of xb as

M0,i(x
b
+ δx0)≈M0,i(x

b)+M0,iδx0 ∀i (11)

HiM0,i(x
b
+ δx0)≈HiM0,i(x

b)+HiM0,iδx0 ∀i (12)

and the new cost function is given by

J (δx0)=
1

2
δxT0 B−1δx0 (13)

+
1

2

N∑
i=0

(HiM0,iδx0− d i)
TR−1

i (HiM0,iδx0− d i),

where d i = yi −Hi(M0,i(xb)) is called the innovation vec-

tor. To take advantage of the non-linearities, it is a common

practice to re-lineariseH andM around a new model trajec-

tory after some iterations of the minimiser. This new model

trajectory is computed by integrating the non-linear model

forward in time using xk0 = x
b
+ δxk0 as the initial condition,

where k refers to the new run of the non-linear model and δxk0
is the increment previously obtained through the minimisa-

tion of Eq. (13). This gives rise to what is called the inner

loop and outer loop iterations. The algorithm implemented

in NEMO, called NEMOVAR (Mogensen et al., 2009), uses

this technique. It can be summarised as follows:

– Initialisation: x0
0 = x

b

– While k ≤ kmax or ‖ δx
a,k
0 ‖> ε (outer loop)

Do

– dki = yi −Hi(M0,i(x
k
0))

– Search the δx
a,k
0 that minimises (inner loop):

J (δxk0)=
1

2
(δxk0)

TB−1(δxk0)

+
1

2

N∑
i=0

(HiM0,iδx
k
0−

dki )
TR−1

i (HiM0,iδx
k
0− d

k
i )

– xk+1
0 = xk0− δx

a,k
0

The description of matrices B and R is given in Sect. 5.2.

3 Ocean model and experimental set-up

The ocean model used in this study is the ocean component

of NEMO (Nucleus for European Modelling of the Ocean;

Madec, 1996). This model is able to represent a wide range of

ocean motions, from the basin scale up to the regional scale.

Currently, it has been used in operational mode by the French

Mercator Océan group (http://www.mercator-ocean.fr) and

the European Centre for Medium Range Weather Forecast

(ECMWF).

The model solves a system of five prognostic equations,

namely the momentum balance for the horizontal velocities,

an equation describing the evolution of the free surface, and

the heat and salt conservation equations. A non-linear equa-

tion of state couples the two tracers to the fluid fields. In this

study, a linear free surface formulation is used along with the

approach developed by Roullet and Madec (2000) to filter

out the external gravity waves.

Equations are discretised using spherical coordinates in an

Arakawa C grid. The model advances in time using a leap-

frog scheme for all terms except for the vertical diffusive

terms, which are treated implicitly. At every time step the

model uses a Robert–Asselin (RA) temporal filter to damp

the computational mode. The leap-frog scheme followed by

the RA filter leads to a first-order temporal scheme (Willians,

2009). Spatial discretisation uses a centered second-order

formulation for both the advective and diffusive terms.

The double gyre configuration, extensively used to study

jet instabilities (Chassignet and Gent, 1991; Primeau, 1998;

Chang et al., 2001), meso- and submeso-scale dynamics

(Levy et al., 2010) and data assimilation methods (Molcard

et al., 2004; Krysta et al., 2011; Cosme et al., 2010), is used

for the present study. The double gyre configuration simu-

lates the ocean middle latitude dynamics and has the advan-

tage of being simple, when compared to real applications, but

still considering full dynamics and thermodynamics.

In our experiments we use a homogeneous horizontal grid

with a 25 km resolution and a vertical resolution ranging

from 100 m near the upper surface to 500 m near the bottom.

The bottom topography is flat and the lateral boundaries are

closed and frictionless. The only forcing term considered is a

constant wind stress of the form τ =
(
τ0 cos

(
2π(y−y0)

L

)
,0
)

,

where y is the latitude geographic coordinate with y0 = 24◦

and y0 ≤ y ≤ 44◦, L= 20◦ and τ0 =−0.1 N m−2. Horizon-

tal diffusion/viscosity are modelled by a bi-Laplacian op-

erator meanwhile a Laplacian operator is used in the ver-

tical. They all use constant coefficients in time and space:

ν
u,v
h =−8× 1010 m4 s−1 and ν

u,v
v = 1.2× 10−4 m2 s−1 for

the momentum equations and ν
t,s
h =−4× 1011 m4 s−1 and

ν
t,s
v = 1.2× 10−5 m2 s−1 for temperature and salinity. The
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initial condition is similar to that used by Chassignet and

Gent (1991) and consists of a homogeneous salinity field

of 35 psu and a temperature field created to provide a strat-

ification which has a first baroclinic deformation radius of

44.7 km. Velocity and sea surface height (SSH) fields are ini-

tially set to zero.

This double gyre configuration is currently used as the

NEMO data assimilation demonstrator and as the experimen-

tation and training platform for data assimilation activities

(Bouttier et al., 2012). For the present work, the model was

integrated for 70 years, in order to reach the statistical steady

state. Afterwards, 10 years of free model run were performed

that were used to calculate the regression models which are

used to calculate the nudging matrix K (see Sect. 5.1), and

then 2 additional years were finally completed to be used as

the truth from which the observations were extracted.

4 The backward integration without nudging:

practical aspects

The backward model uses exactly the same numerical

scheme as the forward model. Since most of the model is

solved using centered finite differences, the inverse version

of the discretised model is similar to the discrete version of

the inverse continuous model. The only distinction between

the forward and backward models is the change in the sign

of the diffusive terms when stepping backwards, this mak-

ing the backward integration stable. If this is not taken into

account, the model blows up after a few days.

Reversing the diffusion sign in the backward model is a

numerical artifact and, being so, its effects should be care-

fully analysed. In this section, the backward integration ac-

curacy is studied, as well as its sensitivity with respect to the

choice of the diffusion coefficient. The errors are analysed

by calculating the L2 error norm at the end of one forward–

backward integration relative to a typical 1 day model varia-

tion:

Rerr =
‖ x(0)− x̃(0) ‖

<‖ x(t +1t)− x(t) ‖>
, (14)

where 1t = 1 day and the brackets represent the empirical

mean.

Figure 1 shows the global error, Rerr, for different win-

dow sizes. The errors grow linearly with the window size

for all variables. Temperature is the most affected variable,

followed by sea level and velocities. Temperature errors ex-

ceed 18 times a typical 1 day variation for the 30 day ex-

periment and 1.2 times for the 2 days. The use of reduced

diffusion/viscosity coefficients reduces the errors to 6.8 and

0.16 times the 1 day variation for 30 and 2 day experiments,

respectively. Velocities errors were reduced by 50 % for 30

days and 85 % for 2 days, while SSH errors were reduced by

60 and 88 % for 30 and 2 days, respectively.

As shown in Fig. 2, velocity and temperature errors are

depth-dependent. Whereas for velocity they are larger at the

Figure 1. Errors in the initial condition after one forward–backward

model integration perfectly initialised and without nudging. Red

curves were obtained using the same diffusion coefficients as in the

reference experiment (ν
u,v
h
=−8× 1010 m4 s−1 and ν

t,s
h
=−4×

1011 m4 s−1) and magenta curves were obtained using reduced dif-

fusion (ν
u,v
h
=−8×109 m4 s−1 and ν

t,s
h
=−8×1010 m4 s−1). The

abscissa represents the length of the time window.

surface and decrease with depth, for temperature they are

larger in the thermocline. In the cases for which the forward–

backward integrations use the same diffusion/viscosity coef-

ficients as in the reference simulation, the temperature errors

at thermocline depths exceed 3 times the typical 1 day varia-

tion for the 5 day experiments and reach 15 times for 20 day

experiments. Considering the velocities, errors are propor-

tional to four 1 day variations for the 5 day experiment and

to eight 1 day variations for the 20 day experiments. For time

windows of 10, 20 and 30 days, velocities at the thermocline

depths start to be influenced by temperature errors.

Reduction of the diffusion/viscosity coefficients greatly

reduced the errors especially in the thermocline for the tem-

perature and at the surface for the velocity. It can be noted

that when the diffusion coefficient is decreased the errors

converge to a limit. This limit changes with respect to the

window length and should be related to the diffusion required

to stabilise the numerical method, which is of second order in

our case, and hence oscillatory. Therefore, there is a compro-

mise between the errors induced by the extra diffusion and

errors due to spurious oscillations.

Numerical errors were assessed by changing the model

time step from 900 to 90 s. The resulting errors (not shown)

do not change, suggesting that the errors induced by the dif-

fusion are dominant. On the one hand, this is important be-

cause the complete rewriting of the model’s code can be dif-

ficult, similar to the adjoint model programming used by the

4Dvar, but on the other hand, if the assimilation cannot con-

trol the diffusion errors, it may represent a fundamental prob-

lem of the method when it is applied to non-reversible geo-

physical systems such as the ocean.

Figure 3 shows the spatial structures of the sea level er-

ror for the 10 day experiment. The errors are highly variable

in space, being larger along the main jet axis. This is proba-
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Figure 2. Vertical profiles of relative errors in the initial condi-

tion after one forward–backward model integration without nudg-

ing. Each colour refers to an experiment performed using the dif-

fusion coefficient indicated in the figure legend. Red curves were

obtained using the same diffusion coefficients as in the reference

experiment. Top panel: temperature errors; bottom panel: zonal ve-

locity errors. The length of the time window is indicated in the title

of each figure.

Figure 3. Sea level errors after one forward–backward model inte-

gration. The time window is 10 days.

bly due to the fact that the backward integration smooths the

gradients, and so the largest errors are found near the fronts.

Therefore, the error structures may be of high variability in

space and time, since they are state dependent.

Figure 4 shows the surface kinetic energy spectrum calcu-

lated from the experiment employing the reference diffusion

coefficient and a reduced diffusion coefficient. The backward

integration introduces an extra diffusion, coarsening the ef-

Figure 4. Kinetic energy mean power spectra calculated using the

first layer velocity fields. Black curves represent the “true” initial

condition power spectra; red curves represent the power spectra cal-

culated after one forward–backward iteration without the nudging

term and employing the reference diffusion coefficient; magenta

curves represent the power spectra calculated after one forward–

backward iteration without the nudging term and employing a re-

duced diffusion coefficient. Top left: 5 day assimilation window.

Top right: 10 day assimilation window. Bottom: 20 day assimilation

window. In the bottom abscissa, the tick labels stand for longitudi-

nal wave number (rad m−1), while in the top abscissa, the tick labels

stand for the corresponding wavelengths in km units.

fective model resolution, which is defined as the portion of

the spectra for which there is a change in the spectrum slope.

In the reference simulation the effective model resolution is

estimated to be 190 km, which is coherent with the≈ 7×1x

estimation of Skamarock (2004).

The longer the time window, the greater the portion of the

spectra affected. For the experiment employing the reference

diffusion coefficient, the divergence between the true spec-

tra and the spectra obtained from the backward integration is

observed at 126, 314 and 627 km for 5, 10 and 20 day experi-

ments, while for the experiments considering a reduced diffu-

sion coefficient there is almost no difference for the 5 day ex-

periment, and the divergence is observed at 126 and 314 km

for the 10 and 20 day experiments. If on the one hand using

the reduced diffusion helps to keep the energy distribution

coherent with the true distribution, on the other hand it cre-

ates noise in the range of 126 to 25 km. This confirms that

there is a trade-off between the errors due to the excessive

smoothing and the errors due to high-frequency numerical

modes.

In this section we have seen that there are large backward

errors induced by over-diffusion. Therefore, short time win-

dows with reduced diffusion coefficients would be preferable

for use in DA experiments. Two regions have to be cautiously

analysed: the surface and the thermocline. Surface layers are
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prone to feature errors due to their role in the wind energy

dissipation, while at the thermocline, strong density gradi-

ents contribute to high diffusion rates.

5 Data assimilation experiments

5.1 Prescription of the DBFN gain

In this study the increments corresponding to the term

K(xobs
−H(x)) are calculated in two operations: first the in-

crements of the observed variables are calculated using a pre-

scribed weight and subsequently the increments of the other

state variables are calculated using linear regression. More

precisely, defining y =H(x) as the observed part of the state

vector, the first step may be written as

δy =2(xobs
− yb), (15)

where the superscript “b” denotes the background field or the

model field available from the last time step. The prescribed

weight is given by

2=
σ 2

m

σ 2
m+ γ σ

2
o

, (16)

where σ 2
m is the mean spatial value of SSH variance calcu-

lated from the free model run, σ 2
o is the observation error

variance and γ is a parameter used to adjust the variance

of the observation errors. When γ = 1 the Eq. (16) for the

weight2 has the same form of the scalar Kalman gain (Gelb

et al., 1974). For values greater than one, γ is an inflation

factor, i.e. it increases the variance of the observation errors

resulting in more weight given to the model in the Eq. (15).

The use of the inflation factor is theoretically justified in

the linear Kalman filtering context. In this case, it is well-

known that the Kalman filter provides the best linear unbi-

ased estimator. Therefore, there is no need to use more than

once the observations. Consequently, when one is iterating

the Kalman filter, the inflation parameter should be used to

avoid overfitting and the introduction of correlated errors in

the system (Kalnay and Yang, 2010). In this study, γ = 18,

which means that theoretically the best solution would be

reached in nine iterations. However, since in this study the

Kalman filter equations are not fully used and the system

is not linear, the γ parameter is used as a guide on how

strong the model is nudged toward the observations. Indeed,

the iterations are not limited to nine. The used values for the

other parameters are σm = 0.017 m and σo = 0.03 m consis-

tently with the perturbations added to the observations (see

Sect. 5.4).

Then, the increments of the non-observed variables, δx,

are calculated by using a regression equation of the form

δx = B̂PLSδy (17)

where B̂PLS is the partial least squares (PLS) regression co-

efficients which are described below. It is worth noting that

in Sect. 6 we also apply this update scheme to an ordinary

direct nudging experiment (ONDG). In this case, there is no

backward integration, there is no iteration and each observa-

tion is used only once. Accordingly, the parameter γ is equal

to 1.

The PLS can be seen as an improvement to the ordinary

least square (OLS) regression. The most important differ-

ence between OLS and PLS is that the latter assumes that

the maximum information about the non-observed variables

is in those directions of the observed space which simulta-

neously have the highest variance and the highest correlation

with the non-observed variables.

In the PLS description (Tenenhaus, 1998), Y ∈ Rn×M is

considered as the observed or predictor variables and X ∈

Rn×N as the non-observed or response variables. In our no-

tation n is the sample size and M and N are respectively

the size of the state space of Y and X. Besides, Y and X

are centered and have the same units. The PLS regression

features two steps: a dimension reduction step in which the

predictors from matrix Y are summarised in a small num-

ber of linear combinations called “PLS components”. Then,

that components are used as predictors in the ordinary least

square regression.

The PLS as well as the principal component regression

can be seen as methods to construct a matrix of p mutually

orthogonal components t as linear combinations of Y:

T= YW, (18)

where T ∈ Rn×p is the matrix of new components ti =

(t1i, . . ., tni)
T , for i = 1, . . .,p, and W ∈ RM×p is a weight

matrix satisfying a particular optimality criterion.

The columns w1, . . .,wp of W are calculated according to

the following optimisation problem:

wi = argmaxw{cov(Yw,X)2}, (19)

subject towTi wi = 1 andwTi YTYwj = 0 for j = 1, . . ., i−1.

The PLS estimator B̂PLS is given by

B̂PLS
=W(WTYTYW)−1WTYTX. (20)

An immediate consequence of Eq. (20) is that when W= I ,

the ordinary least squares solution is obtained.

The number of components p is chosen from cross-

validation. This method involves testing a model with objects

that were not used to build the model. The data set is divided

into two contiguous blocks; one of them is used for training

and the other for validating the model. Then the number of

components giving the best results in terms of mean residual

error and estimator variance is sought.

The weight2 and the regression model B̂PLS are kept con-

stant over the assimilation cycles and the correction steps

(Eqs. 15 and 16) are applied at the end of the loop of time.

Thus, our updating scheme can be seen as a rough approxi-

mation of the two-step update for EnKF presented by Ander-

son (2003).
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5.2 The 4Dvar background term configuration

The 4Dvar considers a background term of the form Jb =
1
2
(δxk0)

TB−1(δxk0), where B is the background error covari-

ance matrix. This term is also known as a regularisation term

in the sense of Tikhonov. It is especially important when

there are not enough observations to determine the problem.

The B matrix is supposed to model the spatial covari-

ance of the background errors of a given variable as well

as the cross-covariance between the errors of different vari-

ables. In order to define the matrix B, Derber and Bouttier

(1999) have proposed to decompose it as the product of sim-

ply defined matrices. This is accomplished by decomposing

the variables into a balanced component and an unbalanced

component. This is done to all variables but one should be

kept without decomposition so as we can define the bal-

anced and unbalanced components of the other variables. We

used the decomposition proposed by Weaver et al. (2005)

for which the temperature is the “seed” variable and then,

thanks to some physical constraints such as the geostrophic

balance, the hydrostatic balance and the principle of water

mass conservation, all other state variables may be decom-

posed into a balanced (B) component and an unbalanced (U)

component. Thus, each model variable, namely temperature

(temp), salinity (salt), sea surface height (η), zonal velocity

(u) and meridional velocity (v), may be written as

temp = temp (21)

salt = saltB+ saltU =Gsalt,temp(temp)+ saltU (22)

η = ηB+ ηU =Gη,ρ(ρ)+ ηU (23)

u= uB+uU =Gu,ρ(ρ)+uU (24)

v = vB+ vU =Gv,ρ(ρ)+ vU (25)

where

ρ =Gρ,temp(temp)+Gρ,salt(salt)

p =Gp,p(ρ)+Gp,η(η),

with ρ the density and p the pressure.

Then, since a covariance matrix may be written as the

product of variances and correlations, B may be expressed as

B=G3TC3GT, where3 is a diagonal matrix of error stan-

dard deviation, for which the climatological standard devia-

tion are the entries, and C is an univariate correlation matrix

modelled using the generalised diffusion equation (Weaver

and Courtier, 2001; Weaver et al., 2005). In this method

the user should choose typical decorrelation lengths. In this

study the horizontal decorrelation length is set to 400 km and

the vertical decorrelation length is set to 1500 m. In addition,

the 4Dvar is configured to perform one outer loop and a max-

imum of thirty inner loops for each assimilation cycle.

5.3 Assimilation cycle

One assimilation cycle is defined as the process of identify-

ing an initial condition through the iterative process followed

by a forecast spanning the assimilation window, which pro-

vides a new background to the next assimilation cycle.

The objective of cycling is to provide a background state

for the next assimilation window that is closer to the true state

than the very first background field. This usually reduces the

number of iterations needed by the algorithms to reach con-

vergence.

The length of the data assimilation window (DAw) used

in the reference experiments (Sect. 6.1) is 10 days. For the

sensitivity experiments presented in Sect. 6.2, the lengths of

the assimilation window are 5 days and 30 days.

5.4 Observation network

In this article, every 4 days an observation network simulat-

ing a Jason-1 satellite density sample is available. The data

are perturbed with white Gaussian noise with standard devi-

ation equal to 3 cm. With this observation network a new set

of 5000 observations is available every 4 days.

The data assimilation problem we proposed to solve is to

recover the full model state at the beginning of the assimila-

tion window. The model state space is composed of five vari-

ables: sea surface height (η), meridional and zonal velocities

(u and v), temperature and salinity (temp and salt). Since

we have a horizontal mesh of size 81× 121 and 11 vertical

layers the total size of the state space is 441 045. Therefore,

the problem is undetermined, since the observations repre-

sent only a 1.1 % of the total state space. This means that

the background term, and accordingly the B matrix for the

4Dvar and the regression model B̂PLS for the DBFN, have

quite a strong importance on the method performances since

they project the increments of the observed variables onto the

numerous non-observed variables.

To study to which extent the results are dependent on the

number of assimilated observations and on the first guess, in

Sect. 6.2.2 two additional experiments assimilating complete

daily fields of SSH are conducted: one using the same first

guess of the experiments of Sect. 6.1, and another using a

perturbed initial condition. Despite the fact that the problem

continues to be underestimated, in this case the SSH analysis

is no longer dependent on the SSH spatial covariance, and

the unstable modes associated with the SSH dynamics are

certainly observed. The analysis produced for the other state

vector variables remains dependent on the matrices B for the

4Dvar case and B̂PLS for the DBFN case.

6 Data assimilation results

6.1 Reference experiment

In this section the results produced by the DBFN, the 4Dvar

method, ordinary nudging (ONDG) and the control exper-

iment are presented. All assimilation methods include the

five prognostic variables in the state vector. This is possible

thanks to the PLS regression method in the case of the DBFN
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Figure 5. Figure shows the gradient of the cost function after each

inner iteration (left) and the reduction of the relative error for zonal

velocity for the DBFN experiment (right).

and ONDG and thanks to the multivariate balance operator G

in the case of the 4Dvar experiments. The diffusion and vis-

cosity coefficients used in the DBFN experiments are those

which produced the smaller errors in the experiments without

nudging, as reported in Sect. 4.

First, the minimisation performance of the 4Dvar imple-

mentation is analysed. Figure 5 shows the reduction of the

cost function gradient for the 4Dvar and the reduction of

the relative error of the zonal velocity for the DBFN, both

of them for the first assimilation cycle. 4Dvar takes 26 it-

erations to approximately achieve the optimality condition

∇J = 0. This represents 3 times the number of iterations re-

quired by the DBFN to converge, after which the errors cease

to decrease. Moreover, the 4Dvar numerical cost is more than

3 times the DBFN cost, since one execution of the adjoint

model is 4 times the cost of the direct model in terms of CPU

time.

We note that the minimum error for the DBFN is reached

after nine iterations. This is quite consistent with our choice

γ = 18, since theoretically it allows the use of the same set

of observations for 18 times.

At this point we find it appropriate to present the fact that

the trajectories of the forward and backward nudging are very

close to each other at convergence, which justifies the quali-

tative explanation of the DBFN algorithm given by Eqs. (6)

and (7). This is illustrated in Fig 6, which shows the for-

ward and backward evolution of the spatially averaged (in

black) and single grid point (at 34◦ N and 52.6◦W, in red)

surface zonal velocity during the last DBFN iteration. The

corresponding grid point is located in the region of the unsta-

ble jet, where velocity strongly varies through time.

Figure 7 shows the root mean square (rms) error for the

control experiment (without assimilation), the experiment

using the direct nudging with PLS regression (ONDG), the

DBFN and the 4Dvar. Each method is cycled according to

the description given in Sect. 5.3 and the curves represent the

forecast rms error; i.e. they are calculated from the forecasts

that were initialised with the analysed fields. The DBFN er-

rors for the velocity and SSH converge to their asymptotic

values after the first assimilation cycle, while for ONDG and

4Dvar, errors stop decreasing after 100 and 200 days, respec-
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Figure 6. Forward and backward evolution of the spatially aver-

aged (black curves) and single grid point (at 34◦ N and 52.6◦W,

red curves) surface zonal velocity during the last DBFN iteration.

The corresponding grid point is located in the region of the unstable

jet. Units on the vertical axes are expressed in m s−1.

tively. This is a benefit of the iterations performed by the

DBFN when the model and data are quite different. Among

the experiments conducted, the DBFN produced the small-

est errors for all variables, except for the zonal velocity, for

which the 4Dvar has slightly smaller errors. The ONDG also

showed good performance, but with errors larger than the

DBFN and 4Dvar errors.

With respect to the vertical error (Fig. 8), the DBFN

and the ONDG performed better for the upper ocean than

4Dvar. Clearly, the PLS also corrects the deep ocean veloc-

ity, but less accurately than 4Dvar. The first error mode is

the barotropic one, i.e. it has the same sign over all depths,

and accounts for 97 % of the error variability for 4Dvar, 96

and 93 % for DBFN and ONDG, respectively. Although the

first mode is the barotropic one for all methods, the 4Dvar

barotropic mode of error is out of phase with respect to the

PLS barotropic mode. This reflects the better performance of

the 4Dvar for the deep ocean and the better performance of

the DBFN and ONDG for the upper ocean.

The second mode, which accounts for almost all the re-

maining variability, has a sign inversion with depth and is

found especially over the main axis of the jet. In this region

the deep ocean velocities are overestimated due to spurious

covariances between the SSH and the deep ocean velocities.

The way both methods correct the model depends on the

B matrix in the 4Dvar algorithm and on the regression model

B̂PLS in the DBFN. It means that results may be different

if another approximation of B and another model regres-

sion model are used. Perhaps the main conclusion of this

comparison is that the DBFN, which is easier to implement

and cheaper to execute, can produce results similar to 4Dvar.

Also, it is shown that iteration is an important aspect of the

method. Iterations use the information contained in the ob-

servations and in the model equations to reduce the uncer-
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Figure 7. Forecast rms errors on SSH (top panel), zonal velocity

(middle panel) and temperature (bottom panel) from DBFN, 4Dvar,

ONDG (Nudg_dir) and the free run. The DAw is 10 days.

Figure 8. Vertical profiles of rms error in zonal velocity (left panel)

and first (middle panel) and second (right panel) eof error modes

calculated using a forecast from day 200 to day 720.

tainty on the initial state. Moreover, the iterations allow us to

put information from the observations into the model, with-

out causing initialisation problems since the nudging gain

can be taken as smaller than the one used for the direct nudg-

ing due to the possibility of using more than once the same

set of observations.

6.2 Sensitivity experiments

6.2.1 Length of the DAw

Sensitivity tests with respect to the length of the DAw are

presented. As we have shown in Sect. 4, the accuracy of the

backward model is inversely proportional to the length of the

DAw. Therefore, in this section we present experiments us-

ing a DAw of 5 days and 30 days. The experiment config-

uration is similar to those presented in the previous section.

The methods are cycled according to the description given in

Sect. 5.3.

Figure 9 shows the evolution of the initial condition rms

errors for the zonal velocity and temperature during the

DBFN iterations over the first assimilation cycle, for three

DAw (including the ten day-window used previously). When

considering only one iteration, the best results were obtained

with the 30 day window experiment. This is a consequence of

the asymptotic character of the nudging method: the longer

the assimilation window, the more observations accounted

for, the smaller the error. This changes when several itera-

tions are considered. The observed divergence for the 30 day

window is due to the errors induced by the over-diffusion that

induce great increments, which by their nature are not mod-

elled by the ensemble of model states used to construct the

regression model.

Figure 10 shows the forecast rms error for the DBFN and

4Dvar experiments for three DAw: 5, 10 and 30 days. The

methods exhibited comparable performances depending on

the length of the DAw. For the DBFN, the 5 and 10 day DAw

provided better results than the 30 day window, while for the

4Dvar the 30 day window provided the best estimation in

terms of rms error. The DBFN and 4Dvar experiments us-

ing the 30 and 5 day DAw, respectively, failed to identify the

initial conditions, since their SSH rms errors are greater than

the observation error standard deviation.

Figure 11 shows the time evolution of vertical profiles of

horizontally layer-wise averaged forecast rms errors of zonal

velocities for the DBFN and 4Dvar experiments. The 4Dvar

profits from the longer DAw to spread the observation to the

three-dimensional variables. This is done by the iterations

of the direct model and by the B matrix. For the DBFN ex-

periments, after 1 year of data assimilation, the errors in the

deep ocean start to grow. This is due to the high variance

of the PLS estimator for deep layers. The problem becomes

more evident in the second year, because at this stage the

observations are farther from the model states used to con-

struct the regression coefficients. Therefore, this means that

this behaviour is not intrinsic to the DBFN algorithm and its

diffusive aspects, but is due to our implementation. Ideally,

the regression model should evolve in time, similarly to the
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Figure 9. Evolution of the initial condition rms errors for the zonal velocity and temperature during the DBFN iterations over the first

assimilation cycle, for three DAw: 5, 10 and 30 days.

Figure 10. Forecast rms errors in SSH (top panel), zonal veloc-

ity (middle panel) and temperature (bottom panel) from DBFN and

4Dvar experiments with DAw of 5, 10 and 30 days.

Kalman filter scheme. The 4Dvar has good performance in

the deep ocean thanks to the use of a vertical localisation

with a length scale of 1500 m.

Next we investigate which scales are better represented by

each assimilation method. This is done by comparing the sur-

Figure 11. Time evolution of vertical profiles of horizontally layer-

wise averaged forecast rms error of zonal velocities for the DBFN

(top panels) and 4Dvar (bottom panels) experiments. Units are in

m s−1.

face kinetic energy spectrum and the deep ocean kinetic spec-

trum produced by each method. Figure 12 shows that the ef-

fective resolution of the model is not affected by the diffusive

character of the DBFN algorithm. It is clear that there is a re-

duction of the energy for the scales close to the grid scale,

but the energy contained in scales greater than 7×1x is not

affected. It means that the diffusion-induced errors presented

in Sect. 4 are “controlled” by the assimilation of sea surface

height observations.

There is no great difference between the DBFN and 4Dvar

surface spectrum for the assimilation windows shorter than

30 days, which once more proves the reliability of the DBFN

for the assimilation of oceanic observations. The energy

spectra for the deep ocean velocities produced by the DBFN

contain more energy than the true spectrum independently

of the used DAw. This confirms that the deep ocean veloc-

ity errors are due to the high variance of the PLS regression

model.
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Figure 12. Kinetic energy mean power spectra calculated using the

first layer (top) and a layer at 2660 m (bottom) and using the 650

days of the assimilation experiments using the DBFN (left) and the

4Dvar (right). Blue curves represent the “true” power spectra; green

curves represent the power spectra calculated for the 5 day DAw;

red curves represent the power spectra calculated for the 10 day

DAw; and black curves represent the power spectra calculated for

the 30 day DAw. In the bottom abscissa the tick labels stand for lon-

gitudinal wave number (rad m−1) while in the top abscissa the tick

labels stand for the corresponding wavelengths in km units.

6.2.2 Observation density and first guess

Finally, two new experiments similar to the one presented in

Sect. 6.1 and assimilating complete daily fields of SSH are

presented. The first one uses the same initial condition of the

previously presented experiments and its goal is to investi-

gate the role of the number of assimilated observations in

the results. Despite the fact that the problem continues to be

underestimated, in this case the SSH analysis is no longer

dependent on the SSH spatial covariance, and the unstable

modes associated with the SSH dynamics are certainly ob-

served. The analysis produced for the other state vector vari-

ables remains dependent on matrices B for the 4Dvar case

and B̂PLS for the DBFN case.

Figure 13 shows the forecast rms error for the SSH and

zonal velocity. The results are quite similar to the results pre-

sented in Sect. 6.1 with a lower rms error for all variables for

both methods. Figure 14 shows the initial condition error for

the zonal velocity produced by both methods for the satellite-

like observations and the complete observations experiments.

The figure reveals that while in some places the inclusion of

more observations helps to reduce the error, in other places

it increases the error. This means that although much more

information could be extracted from the new set of obser-

vations, which decreases the global rms errors, the solution

remains dependent on the covariance structures contained on

B and B̂PLS.

Figure 13. Forecast rms errors in SSH (top panel) and zonal ve-

locity (bottom panel) from the DBFN and 4Dvar experiments with

DAw of 10 days and assimilating complete daily fields of SSH.

Dashed lines concern the results from the perturbed experiments.

Figure 14. Zonal velocity error (analysis–truth) for the first assim-

ilation cycle from DBFN experiments (top panels) and 4Dvar ex-

periments (bottom panels). Right panels show the results obtained

by assimilating complete daily fields of SSH and the left panels the

results from the experiments presented in Sect. 6.1.

The second experiment is initialised with an initial condi-

tion that is 20 days apart from the one used previously, and is

closer in terms of rms error to the observations. We call this

experiment a perturbed experiment. In this case, the objective

is to analyse the sensitivity of the solution to the choice of the

first guess. Thus, only one assimilation cycle is performed.

Figure 15 shows the initial condition error for the SSH pro-

duced by both methods for the perturbed and non-perturbed

experiments. Since the perturbed initial condition is not

much different from the unperturbed one, the analysis errors

have the same structure in both cases, but they differ from

one method to another.
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Figure 15. SSH error (analysis–truth) from DBFN experiments (top

panels) and 4Dvar experiments (bottom panels). Right panels show

the results obtained from the perturbed experiment.

The DBFN produced smaller differences between the per-

turbed and non-perturbed experiences than the 4Dvar for the

entire domain. A remarkable difference between the errors

produced by the 4Dvar and the DBFN is the error struc-

ture in the western boundary that is produced by the DBFN,

which is positive northward of 34◦ N and negative southward

of 34◦ N. The presence of this structure is related to the fact

that the DBFN analysis is the final condition produced by

the backward model. The same pattern was also observed in

Fig. 3, which shows the backward error for the SSH variable.

The rms error of the identified trajectory for the perturbed

experiment may be seen in Fig. 13 as the green (4Dvar) and

black (DBFN) dashed curves. The results clearly show that,

for the configured experiments, the DBFN is much less sen-

sitive to the first guess than the 4Dvar.

The small sensitivity of the DBFN to the first guess is in

accordance with the theoretical result about the BFN pre-

sented by Auroux and Blum (2005) that states that for a linear

system and under complete observation condition the iden-

tified trajectory is independent of the first guess. To what

extent this theoretical result may be extended to non-linear

systems assimilating an incomplete set of observations, such

as the one studied in this article, we do not know. The re-

sults presented here suggest that the use of the DBFN may

be advantageous in situations in which the system passes by

strong changes resulting in a background (first guess) that is

far from the true state.

7 Conclusions and perspectives

This study used the NEMO general circulation model in a

double gyre configuration to investigate the diffusive back-

and-forth nudging performance under different configura-

tions of the data assimilation window, observation network

and initial conditions, and to compare it with 4Dvar.

It has been shown that the reliability of the backward inte-

gration should be carefully examined when the BFN/DBFN

is applied to non-reversible systems. This should support the

choice of the assimilation window and identify whether the

available observations are sufficient to control the errors in-

duced by the non-reversible terms of the model equations.

In this article we have shown that the DBFN might be used

for the assimilation of realistically distributed ocean obser-

vations, despite the limited accuracy of the backward inte-

gration. Improving the backward integration would further

improve the DBFN performance and make possible the use

of longer assimilation windows.

Our results show that the DBFN can produce results com-

parable to 4Dvar using lower computational power. This is

because DBFN demands fewer iterations to converge and be-

cause one iteration of 4Dvar corresponds to one integration

of the tangent linear model, one integration of the adjoint

model, which costs 4 times more than one standard model

integration, plus the cost of minimising the cost function,

while the DBFN iteration costs twice the integration of the

non-linear model.

The sensitivity tests show that for the 4Dvar, long assimila-

tion windows should be preferably used, because they favour

the propagation of the SSH information to the deep layers.

For the DBFN, short windows are preferable because they

reduce the effect of the diffusion-induced errors. In future

works it would be beneficial to account for these errors when

constructing the nudging gain.

Moreover, the results show that for systems assimilating

a much reduced number of observations with respect to the

size of the state space, such as ocean data assimilation sys-

tems usually do, the set-up of the covariance matrix is a key

step, since this matrix propagates the information from the

observed variables to the non-observed variables. In addition,

although in this study the methods have been configured with

different covariance matrices, the results show that the DBFN

is less sensitive to the background field than the 4Dvar.

Finally, it appears that the DBFN algorithm is worth ex-

ploring further, in both theoretical and practical aspects, es-

pecially those related to the optimisation of the matrix K and

applications to a more realistic configuration.
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