Articles | Volume 22, issue 2
https://doi.org/10.5194/npg-22-187-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/npg-22-187-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Statistical optimization for passive scalar transport: maximum entropy production versus maximum Kolmogorov–Sinai entropy
M. Mihelich
Laboratoire SPHYNX, CEA/IRAMIS/SPEC, CNRS URA 2464, 91191 Gif-sur-Yvette, France
D. Faranda
Laboratoire SPHYNX, CEA/IRAMIS/SPEC, CNRS URA 2464, 91191 Gif-sur-Yvette, France
Laboratoire SPHYNX, CEA/IRAMIS/SPEC, CNRS URA 2464, 91191 Gif-sur-Yvette, France
D. Paillard
Laboratoire SPHYNX, CEA/IRAMIS/SPEC, CNRS URA 2464, 91191 Gif-sur-Yvette, France
Related authors
No articles found.
Kerry Emanuel, Tommaso Alberti, Stella Bourdin, Suzana J. Camargo, Davide Faranda, Manos Flaounas, Juan Jesus Gonzalez-Aleman, Chia-Ying Lee, Mario Marcello Miglietta, Claudia Pasquero, Alice Portal, Hamish Ramsay, and Romualdo Romero
EGUsphere, https://doi.org/10.5194/egusphere-2024-3387, https://doi.org/10.5194/egusphere-2024-3387, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Storms strongly resembling hurricanes are sometime observed to form well outside the tropics, even in polar latitudes. They behave capriciously, developing very rapidly and then dying just as quickly. We show that strong dynamical processes in the atmosphere can sometimes cause it to become locally much colder than the underlying ocean, creating the conditions for hurricanes to form, but only over small areas and for short times. We call the resulting storms "cyclops".
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167, https://doi.org/10.5194/egusphere-2024-3167, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme meteorological and climatological events properties are changing under human caused climate change. Extreme events attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogues method which compare the observed event to similar events in the past.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2809, https://doi.org/10.5194/egusphere-2024-2809, 2024
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic ones ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns a holistic analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes and attribution theory.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
EGUsphere, https://doi.org/10.5194/egusphere-2024-1711, https://doi.org/10.5194/egusphere-2024-1711, 2024
Short summary
Short summary
Explosive Cyclones and Atmospheric Rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers are longer-lasting and deeper than those without atmospheric rivers.
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814, https://doi.org/10.5194/gmd-17-3801-2024, https://doi.org/10.5194/gmd-17-3801-2024, 2024
Short summary
Short summary
All accurate climate models use equations with poorly defined parameters, where knobs for the parameters are turned to fit the observations. This process is called tuning. In this article, we use another paradigm. We use a thermodynamic hypothesis, the maximum entropy production, to compute temperatures, energy fluxes, and precipitation, where tuning is impossible. For now, the 1D vertical model is used for a tropical atmosphere. The correct order of magnitude of precipitation is computed.
Lucas Fery and Davide Faranda
Weather Clim. Dynam., 5, 439–461, https://doi.org/10.5194/wcd-5-439-2024, https://doi.org/10.5194/wcd-5-439-2024, 2024
Short summary
Short summary
In this study, we analyse warm-season derechos – a type of severe convective windstorm – in France between 2000 and 2022, identifying 38 events. We compare their frequency and features with other countries. We also examine changes in the associated large-scale patterns. We find that convective instability has increased in southern Europe. However, the attribution of these changes to natural climate variability, human-induced climate change or a combination of both remains unclear.
Emma Holmberg, Gabriele Messori, Rodrigo Caballero, and Davide Faranda
Earth Syst. Dynam., 14, 737–765, https://doi.org/10.5194/esd-14-737-2023, https://doi.org/10.5194/esd-14-737-2023, 2023
Short summary
Short summary
We analyse the duration of large-scale patterns of air movement in the atmosphere, referred to as persistence, and whether unusually persistent patterns favour warm-temperature extremes in Europe. We see no clear relationship between summertime heatwaves and unusually persistent patterns. This suggests that heatwaves do not necessarily require the continued flow of warm air over a region and that local effects could be important for their occurrence.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Gaëlle Leloup and Didier Paillard
Earth Syst. Dynam., 14, 291–307, https://doi.org/10.5194/esd-14-291-2023, https://doi.org/10.5194/esd-14-291-2023, 2023
Short summary
Short summary
Records of past carbon isotopes exhibit oscillations. It is clear over very different time periods that oscillations of 400 kyr take place. Also, strong oscillations of approximately 8–9 Myr are seen over different time periods. While earlier modelling studies have been able to produce 400 kyr oscillations, none of them produced 8–9 Myr cycles. Here, we propose a simple model for the carbon cycle that is able to produce 8–9 Myr oscillations in the modelled carbon isotopes.
Davide Faranda, Stella Bourdin, Mireia Ginesta, Meriem Krouma, Robin Noyelle, Flavio Pons, Pascal Yiou, and Gabriele Messori
Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, https://doi.org/10.5194/wcd-3-1311-2022, 2022
Short summary
Short summary
We analyze the atmospheric circulation leading to impactful extreme events for the calendar year 2021 such as the Storm Filomena, Westphalia floods, Hurricane Ida and Medicane Apollo. For some of the events, we find that climate change has contributed to their occurrence or enhanced their intensity; for other events, we find that they are unprecedented. Our approach underscores the importance of considering changes in the atmospheric circulation when performing attribution studies.
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022, https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Miriam D'Errico, Flavio Pons, Pascal Yiou, Soulivanh Tao, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, https://doi.org/10.5194/esd-13-961-2022, 2022
Short summary
Short summary
Climate change is already affecting weather extremes. In a warming climate, we will expect the cold spells to decrease in frequency and intensity. Our analysis shows that the frequency of circulation patterns leading to snowy cold-spell events over Italy will not decrease under business-as-usual emission scenarios, although the associated events may not lead to cold conditions in the warmer scenarios.
Gaëlle Leloup and Didier Paillard
Clim. Past, 18, 547–558, https://doi.org/10.5194/cp-18-547-2022, https://doi.org/10.5194/cp-18-547-2022, 2022
Short summary
Short summary
Over the last 2.6 Myr, the Quaternary period has been marked by the alternation of extended and reduced Northern Hemisphere ice sheets, known as glacial-interglacial cycles. With a simple model, we are able to reproduce the main features of the ice volume evolution, like the switch of periodicity, from 41 kyr cycles to 100 kyr cycles, observed in the data after 1 Ma. The quality of the model-data agreement depending on the input insolation and period considered is discussed.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard
Nonlin. Processes Geophys., 28, 423–443, https://doi.org/10.5194/npg-28-423-2021, https://doi.org/10.5194/npg-28-423-2021, 2021
Short summary
Short summary
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in many practical situations where using the underlying equations is difficult because of the limitation in computational power. Here we use a systematic approach to investigate the limitations of the popular echo state network algorithms used to forecast the long-term behaviour of chaotic systems, such as the weather. Our results show that noise and intermittency greatly affect the performances.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Gabriele Messori and Davide Faranda
Clim. Past, 17, 545–563, https://doi.org/10.5194/cp-17-545-2021, https://doi.org/10.5194/cp-17-545-2021, 2021
Short summary
Short summary
The palaeoclimate community must both analyse large amounts of model data and compare very different climates. Here, we present a seemingly very abstract analysis approach that may be fruitfully applied to palaeoclimate numerical simulations. This approach characterises the dynamics of a given climate through a small number of metrics and is thus suited to face the above challenges.
Gabriele Messori, Nili Harnik, Erica Madonna, Orli Lachmy, and Davide Faranda
Earth Syst. Dynam., 12, 233–251, https://doi.org/10.5194/esd-12-233-2021, https://doi.org/10.5194/esd-12-233-2021, 2021
Short summary
Short summary
Atmospheric jets are a key component of the climate system and of our everyday lives. Indeed, they affect human activities by influencing the weather in many mid-latitude regions. However, we still lack a complete understanding of their dynamical properties. In this study, we try to relate the understanding gained in idealized computer simulations of the jets to our knowledge from observations of the real atmosphere.
Flavio Maria Emanuele Pons and Davide Faranda
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-352, https://doi.org/10.5194/nhess-2020-352, 2020
Preprint withdrawn
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Davide Faranda
Weather Clim. Dynam., 1, 445–458, https://doi.org/10.5194/wcd-1-445-2020, https://doi.org/10.5194/wcd-1-445-2020, 2020
Short summary
Short summary
Despite the global temperature rise caused by anthropogenic emissions, we still observe heavy snowfalls that cause casualties, transport disruptions and energy supply problems. The goal of this paper is to investigate recent trends in snowfalls from reanalysis and observational datasets. The analysis shows an evident discrepancy between trends in average and extreme snowfalls. The latter can only be explained by looking at atmospheric circulation.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019, https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Short summary
We show how the complex dynamics of the jet stream at midlatitude can be described by a simple mathematical model. We match the properties of the model to those obtained by the jet data derived from observations.
Vincent Labarre, Didier Paillard, and Bérengère Dubrulle
Earth Syst. Dynam., 10, 365–378, https://doi.org/10.5194/esd-10-365-2019, https://doi.org/10.5194/esd-10-365-2019, 2019
Short summary
Short summary
We tried to represent atmospheric convection induced by radiative forcing with a simple climate model based on maximum entropy production. Contrary to previous models, we give a minimal description of energy transport in the atmosphere. It allows us to give better results in terms of temperature and vertical energy flux profiles.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Davide Faranda, Gabriele Messori, M. Carmen Alvarez-Castro, and Pascal Yiou
Nonlin. Processes Geophys., 24, 713–725, https://doi.org/10.5194/npg-24-713-2017, https://doi.org/10.5194/npg-24-713-2017, 2017
Short summary
Short summary
We study the dynamical properties of the Northern Hemisphere atmospheric circulation by analysing the sea-level pressure, 2 m temperature, and precipitation frequency field over the period 1948–2013. The metrics are linked to the predictability and the persistence of the atmospheric flows. We study the dependence on the seasonal cycle and the fields corresponding to maxima and minima of the dynamical indicators.
Didier Paillard
Clim. Past, 13, 1259–1267, https://doi.org/10.5194/cp-13-1259-2017, https://doi.org/10.5194/cp-13-1259-2017, 2017
Short summary
Short summary
Ice ages are paced by astronomical parameters. On longer timescales, the astronomy also acts on climate, as evidenced by the 400 kyr signature observed in carbon isotopic records. In this paper, I present a conceptual model that links the astronomy to the dynamics of organic carbon in coastal areas. The model reproduces the carbon isotopic records and a two-step decrease in atmospheric CO2 that would explain the Pleistocene (~ 2.8 Myr BP) and mid-Pleistocene (~ 0.8 Myr BP) transition.
Davide Faranda and Dimitri Defrance
Earth Syst. Dynam., 7, 517–523, https://doi.org/10.5194/esd-7-517-2016, https://doi.org/10.5194/esd-7-517-2016, 2016
Short summary
Short summary
We introduce a general technique to detect a climate change signal in the coherent and turbulent components of the atmospheric circulation. Our analysis suggests that the coherent components (atmospheric waves, long-term oscillations) will experience the greatest changes in future climate, proportionally to the greenhouse gas emission scenario considered.
S. Karkar and D. Paillard
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-6-407-2015, https://doi.org/10.5194/esdd-6-407-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This paper proposes a method to infer global wind energetics of the atmosphere. It uses the energy fluxes obtained with a climate box-model previously proposed by Herbert et al., based on the maximization of entropy production (MEP) principle, to compute annual mean winds. Specific details of the circulation are not recovered, as the atmosphere is represented with only one layer, but global figures are well captured.
F. Parrenin and D. Paillard
Clim. Past, 8, 2031–2037, https://doi.org/10.5194/cp-8-2031-2012, https://doi.org/10.5194/cp-8-2031-2012, 2012
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Learning extreme vegetation response to climate drivers with recurrent neural networks
Representation learning with unconditional denoising diffusion models for dynamical systems
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
The sampling method for optimal precursors of El Niño–Southern Oscillation events
A comparison of two causal methods in the context of climate analyses
A two-fold deep-learning strategy to correct and downscale winds over mountains
Downscaling of surface wind forecasts using convolutional neural networks
Superstatistical analysis of sea surface currents in the Gulf of Trieste, measured by high-frequency radar, and its relation to wind regimes using the maximum-entropy principle
Physically constrained covariance inflation from location uncertainty
Data-driven methods to estimate the committor function in conceptual ocean models
Exploring meteorological droughts' spatial patterns across Europe through complex network theory
Rain process models and convergence to point processes
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Predicting sea surface temperatures with coupled reservoir computers
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Using neural networks to improve simulations in the gray zone
Direct Bayesian model reduction of smaller scale convective activity conditioned on large-scale dynamics
A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship
The blessing of dimensionality for the analysis of climate data
Empirical evidence of a fluctuation theorem for the wind mechanical power input into the ocean
Producing realistic climate data with generative adversarial networks
Identification of droughts and heatwaves in Germany with regional climate networks
Recurrence analysis of extreme event-like data
Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Applications of matrix factorization methods to climate data
Beyond univariate calibration: verifying spatial structure in ensembles of forecast fields
Simulation-based comparison of multivariate ensemble post-processing methods
Detecting dynamical anomalies in time series from different palaeoclimate proxy archives using windowed recurrence network analysis
Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory
Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression
On fluctuating momentum exchange in idealised models of air–sea interaction
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
Statistical post-processing of ensemble forecasts of the height of new snow
Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach
Statistical hypothesis testing in wavelet analysis: theoretical developments and applications to Indian rainfall
Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model
Idealized models of the joint probability distribution of wind speeds
Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea
A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 1: Frequency analysis
A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 2: Extension to time–frequency analysis
Tipping point analysis of ocean acoustic noise
On the intrinsic timescales of temporal variability in measurements of the surface solar radiation
Optimal heavy tail estimation – Part 1: Order selection
Network-based study of Lagrangian transport and mixing
Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach
Fractional Brownian motion, the Matérn process, and stochastic modeling of turbulent dispersion
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024, https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Short summary
We investigated how machine learning can forecast extreme vegetation responses to weather. Examining four models, no single one stood out as the best, though "echo state networks" showed minor advantages. Our results indicate that while these tools are able to generally model vegetation states, they face challenges under extreme conditions. This underlines the potential of artificial intelligence in ecosystem modeling, also pinpointing areas that need further research.
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024, https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Short summary
We train neural networks as denoising diffusion models for state generation in the Lorenz 1963 system and demonstrate that they learn an internal representation of the system. We make use of this learned representation and the pre-trained model in two downstream tasks: surrogate modelling and ensemble generation. For both tasks, the diffusion model can outperform other more common approaches. Thus, we see a potential of representation learning with diffusion models for dynamical systems.
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024, https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Short summary
The characterisation of abrupt transitions in palaeoclimate records allows understanding of millennial climate variability and potential tipping points in the context of current climate change. In our study an algorithmic method, the matrix profile, is employed to characterise abrupt warmings designated as Dansgaard–Oeschger (DO) events and to identify the most similar transitions in the palaeoclimate time series.
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024, https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Short summary
During the last 2 years, tremendous progress has been made in global data-driven weather models trained on reanalysis data. In this study, the Pangu-Weather model is compared to several numerical weather prediction models with and without probabilistic post-processing for temperature and wind speed forecasting. The results confirm that global data-driven models are promising for operational weather forecasting and that post-processing can improve these forecasts considerably.
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024, https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
Short summary
Different from traditional deterministic optimization algorithms, we implement the sampling method to compute the conditional nonlinear optimal perturbations (CNOPs) in the realistic and predictive coupled ocean–atmosphere model, which reduces the first-order information to the zeroth-order one, avoiding the high-cost computation of the gradient. The numerical performance highlights the importance of stochastic optimization algorithms to compute CNOPs and capture initial optimal precursors.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024, https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Short summary
Forecasting wind fields over mountains is of high importance for several applications and particularly for understanding how wind erodes and disperses snow. Forecasters rely on operational wind forecasts over mountains, which are currently only available on kilometric scales. These forecasts can also be affected by errors of diverse origins. Here we introduce a new strategy based on artificial intelligence to correct large-scale wind forecasts in mountains and increase their spatial resolution.
Florian Dupuy, Pierre Durand, and Thierry Hedde
Nonlin. Processes Geophys., 30, 553–570, https://doi.org/10.5194/npg-30-553-2023, https://doi.org/10.5194/npg-30-553-2023, 2023
Short summary
Short summary
Forecasting near-surface winds over complex terrain requires high-resolution numerical weather prediction models, which drastically increase the duration of simulations and hinder them in running on a routine basis. A faster alternative is statistical downscaling. We explore different ways of calculating near-surface wind speed and direction using artificial intelligence algorithms based on various convolutional neural networks in order to find the best approach for wind downscaling.
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023, https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Short summary
An increasing amount of data allows us to move from low-order moments of fluctuating observations to their PDFs. We found the analytical fat-tailed PDF form (a combination of Gaussian and two-exponential convolutions) for 2 years of sea surface current increments in the Gulf of Trieste, using superstatistics and the maximum-entropy principle twice: on short and longer timescales. The data from different wind regimes follow the same analytical PDF, pointing towards a universal behaviour.
Yicun Zhen, Valentin Resseguier, and Bertrand Chapron
Nonlin. Processes Geophys., 30, 237–251, https://doi.org/10.5194/npg-30-237-2023, https://doi.org/10.5194/npg-30-237-2023, 2023
Short summary
Short summary
This paper provides perspective that the displacement vector field of physical state fields should be determined by the tensor fields associated with the physical fields. The advantage of this perspective is that certain physical quantities can be conserved while applying a displacement vector field to transfer the original physical field. A direct application of this perspective is the physically constrained covariance inflation scheme proposed in this paper.
Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra
Nonlin. Processes Geophys., 30, 195–216, https://doi.org/10.5194/npg-30-195-2023, https://doi.org/10.5194/npg-30-195-2023, 2023
Short summary
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023, https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Short summary
Despite being among the most severe climate extremes, it is still challenging to assess droughts’ features for specific regions. In this paper we study meteorological droughts in Europe using concepts derived from climate network theory. By exploring the synchronization in droughts occurrences across the continent we unveil regional clusters which are individually examined to identify droughts’ geographical propagation and source–sink systems, which could potentially support droughts’ forecast.
Scott Hottovy and Samuel N. Stechmann
Nonlin. Processes Geophys., 30, 85–100, https://doi.org/10.5194/npg-30-85-2023, https://doi.org/10.5194/npg-30-85-2023, 2023
Short summary
Short summary
Rainfall is erratic and difficult to predict. Thus, random models are often used to describe rainfall events. Since many of these random models are based more on statistics than physical laws, it is desirable to develop connections between the random statistical models and the underlying physics of rain. Here, a physics-based model is shown to converge to a statistics-based model, which helps to provide a physical basis for the statistics-based model.
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022, https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Short summary
In this study, we successfully built and evaluated machine learning models for predicting water level dynamics as a proxy for compound flooding hazards in a data-scarce delta. The issues that we tackled here are data scarcity and low computational resources for building flood forecasting models. The proposed approach is suitable for use by local water management agencies in developing countries that encounter these issues.
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022, https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Short summary
The complexity of geophysics systems results in time series with fluctuations at all timescales. The analysis of their variability then consists in decomposing them into a set of basis signals. We developed here a new adaptive filtering method called empirical adaptive wavelet decomposition that optimizes the empirical-mode decomposition existing technique, overcoming its drawbacks using the rigour of wavelets as defined in the recently published empirical wavelet transform method.
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022, https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Short summary
As sea surface temperature (SST) is vital for understanding the greater climate of the Earth and is also an important variable in weather prediction, we propose a model that effectively capitalizes on the reduced complexity of machine learning models while still being able to efficiently predict over a large spatial domain. We find that it is proficient at predicting the SST at specific locations as well as over the greater domain of the Earth’s oceans.
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022, https://doi.org/10.5194/npg-29-183-2022, 2022
Short summary
Short summary
In most of the investigations on metastable systems, the stochastic forcing is modulated by Gaussian noise. Lévy noise laws, which describe jump processes, have recently received a lot of attention, but much less is known. We study stochastic versions of the Ghil–Sellers energy balance model, and we highlight the fundamental difference between how transitions are performed between the competing warm and snowball states, depending on whether Gaussian or Lévy noise acts as forcing.
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022, https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary
Short summary
Our regional numerical weather prediction models run at kilometer-scale resolutions. Processes that occur at smaller scales not yet resolved contribute significantly to the atmospheric flow. We use a neural network (NN) to represent the unresolved part of physical process such as cumulus clouds. We test this approach on a simplified, yet representative, 1D model and find that the NN corrections vastly improve the model forecast up to a couple of days.
Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai
Nonlin. Processes Geophys., 29, 37–52, https://doi.org/10.5194/npg-29-37-2022, https://doi.org/10.5194/npg-29-37-2022, 2022
Short summary
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022, https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
Short summary
The skewness of a time series is commonly used to quantify the extent to which positive (negative) deviations from the mean are larger than negative (positive) ones. However, in some cases, traditional skewness may not provide reliable information about time series skewness, motivating the development of a waveform skewness index in this paper. The waveform skewness index is used to show that changes in the relationship strength between climate time series could arise from changes in skewness.
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021, https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Short summary
In geophysics we often need to analyse large samples of high-dimensional fields. Fortunately but counterintuitively, such high dimensionality can be a blessing, and we demonstrate how this allows simple analytical results to be derived. These results include estimates of correlations between sample members and how the sample mean depends on the sample size. We show that the properties of high dimensionality with success can be applied to climate fields, such as those from ensemble modelling.
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378, https://doi.org/10.5194/npg-28-371-2021, https://doi.org/10.5194/npg-28-371-2021, 2021
Short summary
Short summary
In non-equilibrium statistical mechanics, which describes forced-dissipative systems such as air–sea interaction, there is no universal probability density function (pdf). Some such systems have recently been demonstrated to exhibit a symmetry called a fluctuation theorem (FT), which strongly constrains the shape of the pdf. Using satellite data, the mechanical power input to the ocean by air–sea interaction following or not a FT is questioned. A FT is found to apply over specific ocean regions.
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021, https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
Short summary
This paper investigates the potential of a type of deep generative neural network to produce realistic weather situations when trained from the climate of a general circulation model. The generator represents the climate in a compact latent space. It is able to reproduce many aspects of the targeted multivariate distribution. Some properties of our method open new perspectives such as the exploration of the extremes close to a given state or how to connect two realistic weather states.
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021, https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary
Short summary
We used regional climate networks (RCNs) to identify past heatwaves and droughts in Germany. RCNs provide information for whole areas and can provide many details of extreme events. The RCNs were constructed on the grid of the E-OBS data set. Time series correlation was used to construct the networks. Network metrics were compared to standard extreme indices and differed considerably between normal and extreme years. The results show that RCNs can identify severe and moderate extremes.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Jonathan M. Lilly and Paula Pérez-Brunius
Nonlin. Processes Geophys., 28, 181–212, https://doi.org/10.5194/npg-28-181-2021, https://doi.org/10.5194/npg-28-181-2021, 2021
Short summary
Short summary
Long-lived eddies are an important part of the ocean circulation. Here a dataset for studying eddies in the Gulf of Mexico is created through the analysis of trajectories of drifting instruments. The method involves the identification of quasi-periodic signals, characteristic of particles trapped in eddies, from the displacement records, followed by the creation of a measure of statistical significance. It is expected that this dataset will be of use to other authors studying this region.
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021, https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Short summary
This paper proposes two improvements to the use of Trajectory-Adaptive Multilevel Sampling, a rare-event algorithm which computes noise-induced transition probabilities. The first improvement uses locally linearised dynamics in order to reduce the arbitrariness associated with defining what constitutes a transition. The second improvement uses empirical transition paths accumulated at high noise in order to formulate the score function which determines the performance of the algorithm.
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021, https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
Short summary
An unprecedented amount of rainfall data is available nowadays, such as ensemble model output, weather radar estimates, and in situ observations from networks of both traditional and opportunistic sensors. Nevertheless, the exact amount of precipitation, to some extent, eludes our knowledge. The objective of our study is precipitation reconstruction through the combination of numerical model outputs with observations from multiple data sources.
Dylan Harries and Terence J. O'Kane
Nonlin. Processes Geophys., 27, 453–471, https://doi.org/10.5194/npg-27-453-2020, https://doi.org/10.5194/npg-27-453-2020, 2020
Short summary
Short summary
Different dimension reduction methods may produce profoundly different low-dimensional representations of multiscale systems. We perform a set of case studies to investigate these differences. When a clear scale separation is present, similar bases are obtained using all methods, but when this is not the case some methods may produce representations that are poorly suited for describing features of interest, highlighting the importance of a careful choice of method when designing analyses.
Josh Jacobson, William Kleiber, Michael Scheuerer, and Joseph Bellier
Nonlin. Processes Geophys., 27, 411–427, https://doi.org/10.5194/npg-27-411-2020, https://doi.org/10.5194/npg-27-411-2020, 2020
Short summary
Short summary
Most verification metrics for ensemble forecasts assess the representation of uncertainty at a particular location and time. We study a new diagnostic tool based on fractions of threshold exceedance (FTE) which evaluates an additional important attribute: the ability of ensemble forecast fields to reproduce the spatial structure of observed fields. The utility of this diagnostic tool is demonstrated through simulations and an application to ensemble precipitation forecasts.
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371, https://doi.org/10.5194/npg-27-349-2020, https://doi.org/10.5194/npg-27-349-2020, 2020
Short summary
Short summary
Accurate models of spatial, temporal, and inter-variable dependencies are of crucial importance for many practical applications. We review and compare several methods for multivariate ensemble post-processing, where such dependencies are imposed via copula functions. Our investigations utilize simulation studies that mimic challenges occurring in practical applications and allow ready interpretation of the effects of different misspecifications of the numerical weather prediction ensemble.
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275, https://doi.org/10.5194/npg-27-261-2020, https://doi.org/10.5194/npg-27-261-2020, 2020
Julian Steinheuer and Petra Friederichs
Nonlin. Processes Geophys., 27, 239–252, https://doi.org/10.5194/npg-27-239-2020, https://doi.org/10.5194/npg-27-239-2020, 2020
Short summary
Short summary
Many applications require wind gust estimates at very different atmospheric altitudes, such as in the wind energy sector. However, numerical weather prediction models usually only derive estimates for gusts at 10 m above the land surface. We present a statistical model that gives the hourly peak wind speed. The model is trained based on a weather reanalysis and observations from the Hamburg Weather Mast. Reliable predictions are derived at up to 250 m, even at unobserved intermediate levels.
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020, https://doi.org/10.5194/npg-27-23-2020, 2020
Short summary
Short summary
Statistical post-processing aims to increase the predictive skill of probabilistic ensemble weather forecasts by learning the statistical relation between historical pairs of observations and ensemble forecasts within a given training data set. This study compares four different training schemes and shows that including multiple years of data in the training set typically yields a more stable post-processing while it loses the ability to quickly adjust to temporal changes in the underlying data.
Achim Wirth
Nonlin. Processes Geophys., 26, 457–477, https://doi.org/10.5194/npg-26-457-2019, https://doi.org/10.5194/npg-26-457-2019, 2019
Short summary
Short summary
The conspicuous feature of the atmosphere–ocean system is the large difference in the masses of the two media. In this respect there is a strong analogy to Brownian motion, with light and fast molecules colliding with heavy and slow Brownian particles. I apply the tools of non-equilibrium statistical mechanics for studying Brownian motion to air–sea interaction.
Carsten Abraham, Amber M. Holdsworth, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 401–427, https://doi.org/10.5194/npg-26-401-2019, https://doi.org/10.5194/npg-26-401-2019, 2019
Short summary
Short summary
Atmospheric stably stratified boundary layers display transitions between regimes of sustained and intermittent turbulence. These transitions are not well represented in numerical weather prediction and climate models. A prototype explicitly stochastic turbulence parameterization simulating regime dynamics is presented and tested in an idealized model. Results demonstrate that the approach can improve the regime representation in models.
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019, https://doi.org/10.5194/npg-26-339-2019, 2019
Short summary
Short summary
Forecasting the height of new snow is crucial for avalanche hazard, road viability, ski resorts and tourism. The numerical models suffer from systematic and significant errors which are misleading for the final users. Here, we applied for the first time a state-of-the-art statistical method to correct ensemble numerical forecasts of the height of new snow from their statistical link with measurements in French Alps and Pyrenees. Thus the realism of automatic forecasts can be quickly improved.
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
Justin A. Schulte
Nonlin. Processes Geophys., 26, 91–108, https://doi.org/10.5194/npg-26-91-2019, https://doi.org/10.5194/npg-26-91-2019, 2019
Short summary
Short summary
Statistical hypothesis tests in wavelet analysis are used to asses the likelihood that time series features are noise. The choice of test will determine which features emerge as a signal. Tests based on area do poorly at distinguishing abrupt fluctuations from periodic behavior, unlike tests based on arclength that do better. The application of the tests suggests that there are features in Indian rainfall time series that emerge from background noise.
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 605–631, https://doi.org/10.5194/npg-25-605-2018, https://doi.org/10.5194/npg-25-605-2018, 2018
Short summary
Short summary
We investigate the modeling of the effects of the unresolved scales on the large scales of the coupled ocean–atmosphere model MAOOAM. Two different physically based stochastic methods are considered and compared, in various configurations of the model. Both methods show remarkable performances and are able to model fundamental changes in the model dynamics. Ways to improve the parameterizations' implementation are also proposed.
Adam H. Monahan
Nonlin. Processes Geophys., 25, 335–353, https://doi.org/10.5194/npg-25-335-2018, https://doi.org/10.5194/npg-25-335-2018, 2018
Short summary
Short summary
Bivariate probability density functions (pdfs) of wind speed characterize the relationship between speeds at two different locations or times. This study develops such pdfs of wind speed from distributions of the components, following a well-established approach for univariate distributions. The ability of these models to characterize example observed datasets is assessed. The mathematical complexity of these models suggests further extensions of this line of reasoning may not be practical.
Berenice Rojo-Garibaldi, David Alberto Salas-de-León, María Adela Monreal-Gómez, Norma Leticia Sánchez-Santillán, and David Salas-Monreal
Nonlin. Processes Geophys., 25, 291–300, https://doi.org/10.5194/npg-25-291-2018, https://doi.org/10.5194/npg-25-291-2018, 2018
Short summary
Short summary
Hurricanes are complex systems that carry large amounts of energy. Its impact produces, most of the time, natural disasters involving the loss of human lives and of materials and infrastructure that is accounted for in billions of US dollars. Not everything is negative as hurricanes are the main source of rainwater for the regions where they develop. In this study we make a nonlinear analysis of the time series obtained from 1749 to 2012 of the hurricane occurrence in the Gulf of Mexico.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 145–173, https://doi.org/10.5194/npg-25-145-2018, https://doi.org/10.5194/npg-25-145-2018, 2018
Short summary
Short summary
We develop a general framework for the frequency analysis of irregularly sampled time series. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. Our results generalize and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. All the analysis tools presented in this paper are available to the reader in the Python package WAVEPAL.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 175–200, https://doi.org/10.5194/npg-25-175-2018, https://doi.org/10.5194/npg-25-175-2018, 2018
Short summary
Short summary
There is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework with the Morlet wavelet, based on the results of part I of this study. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
Valerie N. Livina, Albert Brouwer, Peter Harris, Lian Wang, Kostas Sotirakopoulos, and Stephen Robinson
Nonlin. Processes Geophys., 25, 89–97, https://doi.org/10.5194/npg-25-89-2018, https://doi.org/10.5194/npg-25-89-2018, 2018
Short summary
Short summary
We have applied tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system: long-term and seasonal trends, system states and fluctuations. We reconstructed a one-dimensional stochastic model equation to approximate the acoustic dynamical system. We have found a signature of El Niño events in the deep ocean acoustic data near the southwest Australian coast, which proves the investigative power of the tipping point methodology.
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Nonlin. Processes Geophys., 25, 19–37, https://doi.org/10.5194/npg-25-19-2018, https://doi.org/10.5194/npg-25-19-2018, 2018
Short summary
Short summary
We employ the Hilbert–Huang transform to study the temporal variability in time series of daily means of the surface solar irradiance (SSI) at different locations around the world. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency "weather noise", irrespective of the geographical location or of the local climate. Our findings can improve models for estimating SSI from satellite images or forecasts of the SSI.
Manfred Mudelsee and Miguel A. Bermejo
Nonlin. Processes Geophys., 24, 737–744, https://doi.org/10.5194/npg-24-737-2017, https://doi.org/10.5194/npg-24-737-2017, 2017
Short summary
Short summary
Risk analysis of extremes has high socioeconomic relevance. Of crucial interest is the tail probability, P, of the distribution of a variable, which is the chance of observing a value equal to or greater than a certain threshold value, x. Many variables in geophysical systems (e.g. climate) show heavy tail behaviour, where P may be rather large. In particular, P decreases with x as a power law that is described by a parameter, α. We present an improved method to estimate α on data.
Kathrin Padberg-Gehle and Christiane Schneide
Nonlin. Processes Geophys., 24, 661–671, https://doi.org/10.5194/npg-24-661-2017, https://doi.org/10.5194/npg-24-661-2017, 2017
Short summary
Short summary
Transport and mixing processes in fluid flows are crucially influenced by coherent structures, such as eddies, gyres, or jets in geophysical flows. We propose a very simple and computationally efficient approach for analyzing coherent behavior in fluid flows. The central object is a flow network constructed directly from particle trajectories. The network's local and spectral properties are shown to give a very good indication of coherent as well as mixing regions in the underlying flow.
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Jonathan M. Lilly, Adam M. Sykulski, Jeffrey J. Early, and Sofia C. Olhede
Nonlin. Processes Geophys., 24, 481–514, https://doi.org/10.5194/npg-24-481-2017, https://doi.org/10.5194/npg-24-481-2017, 2017
Short summary
Short summary
This work arose from a desire to understand the nature of particle motions in turbulence. We sought a simple conceptual model that could describe such motions, then realized that this model could be applicable to an array of other problems. The basic idea is to create a string of random numbers, called a stochastic process, that mimics the properties of particle trajectories. This model could be useful in making best use of data from freely drifting instruments tracking the ocean currents.
Cited articles
Andjel, E. D.: Invariant measures for the zero range process, Ann. Probabil., 525–547, 1982.
Balian, R.: Physique statistique et themodynamique hors équilibre, Ecole Polytechnique, 1992.
Billingsley, P.: Ergodic theory and information, Wiley, 1965.
Burda, Z., Duda, J., Luck, J. M., and Waclaw, B.: Localization of the maximal entropy random walk, Phys. Rev. Lett., 102, 160602, 2009.
Dewar, R. C. and Maritan, A.: A theoretical basis for maximum entropy production, in: Beyond the Second Law, 49–71, Springer, 2014.
Domb, C.: Phase transitions and critical phenomena, Vol. 19, Academic Press, 2000.
Frisch, U.: Turbulence: the legacy of AN Kolmogorov, Cambridge University Press, 1995.
Gómez-Gardeñes, J. and Latora, V.: Entropy rate of diffusion processes on complex networks, Phys. Rev. E, 78, 065102, 2008.
Großkinsky, S., Schütz, G. M., and Spohn, H.: Condensation in the zero range process: stationary and dynamical properties, J. Stat. Phys., 113, 389–410, 2003.
Herbert, C., Paillard, D., Kageyama, M., and Dubrulle, B.: Present and Last Glacial Maximum climates as states of maximum entropy production, Q. J. Roy. Meteorol. Soc., 137, 1059–1069, 2011.
Levine, E., Mukamel, D., and Schütz, G.: Zero-range process with open boundaries, J. Stat. Phys., 120, 759–778, 2005.
Martyushev, L. M. and Seleznev, V. D.: Maximum entropy production principle in physics, chemistry and biology, Phys. Rep., 426, 1–45, 2006.
Mihelich, M., Dubrulle, B., Paillard, D., and Herbert, C.: Maximum Entropy Production vs. Kolmogorov-Sinai Entropy in a Constrained ASEP Model, Entropy, 16, 1037–1046, 2014.
Monthus, C.: Non-equilibrium steady states: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints, J. Stat. Mech., p. P03008, 2011.
Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768–772, 2004.
Onsager, L.: Reciprocal relations in irreversible processes. I., Phys. Rev., 37, 2265–2279, 1931.
Paltridge, G. W.: Global dynamics and climate-a system of minimum entropy exchange, Q. J. Roy. Meteorol. Soc., 101, 475–484, 1975.
Pascale, S., Gregory, J. M., Ambaum, M. H., and Tailleux, R.: A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM, Clim. Dynam., 38, 1211–1227, 2012.
Rotstayn, L. D.: On the "tuning" of autoconversion parameterizations in climate models, J. Geophys. Res.-Atmso. (1984–2012), 105, 15495–15507, 2000.
Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation, Boundary-Lay. Meteorol., 37, 129–148, 1986.
Turkington, B.: An optimization principle for deriving nonequilibrium statistical models of hamiltonian dynamics, J. Stat. Phys., 152, 569–597, 2013.
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory survey, Vol. 92, Academic press, 2006.