Articles | Volume 24, issue 4
https://doi.org/10.5194/npg-24-613-2017
https://doi.org/10.5194/npg-24-613-2017
Review article
 | 
17 Oct 2017
Review article |  | 17 Oct 2017

Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

Jordi Isern-Fontanet, Joaquim Ballabrera-Poy, Antonio Turiel, and Emilio García-Ladona

Related authors

Sensibility to noise of new multifractal fusion methods for ocean variables
A. Turiel, J. Isern-Fontanet, and M. Umbert
Nonlin. Processes Geophys., 21, 291–301, https://doi.org/10.5194/npg-21-291-2014,https://doi.org/10.5194/npg-21-291-2014, 2014

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary

Cited articles

Abraham, E.: The generation of plankton patchiness by turbulent stirring, Nature, 391, 577–580, 1998.
Afanasyev, Y., Kostianoy, A., Zatsepin, A., and Poulain, P.: Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea '99 experiment, J. Geophys. Res., 107, 13, https://doi.org/10.1029/2000JC000578, 2002.
Ardhuin, F., Marié, L., Rascle, N., Forget, P., and Roland, A.: Observation and estimation of Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface, J. Phys. Oceanogr., 39, 2820–2838, https://doi.org/10.1175/2009JPO4169.1, 2009.
Arnason, G., Haltiner, G., and Frawley, M.: Higher order geostrophic wind approximations, Mon. Weather Rev., 90, 175–185, 1962.
AVISO Altimetry: User Handbook Ssalto/Duacs: M(SLA) and M(ADT) Near-Real Time and Delayed-Time, Collecte Localisation Satellites, SALP-MU-P-EA-21065-CLS Edn., 2016.
Download
Short summary
Ocean currents play a key role in Earth’s climate – they are of major importance for navigation and human activities at sea and impact almost all processes that take place in the ocean. Nevertheless, their observation and forecasting are still difficult. Here, we review the main techniques used to derive surface currents from satellite measurements and the existing approaches to assimilate this information into ocean models.