Articles | Volume 21, issue 5
Nonlin. Processes Geophys., 21, 955–970, 2014
https://doi.org/10.5194/npg-21-955-2014
Nonlin. Processes Geophys., 21, 955–970, 2014
https://doi.org/10.5194/npg-21-955-2014

Research article 23 Sep 2014

Research article | 23 Sep 2014

Improving the ensemble transform Kalman filter using a second-order Taylor approximation of the nonlinear observation operator

G. Wu et al.

Related authors

Assimilating shallow soil moisture observations into land models with a water budget constraint
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020,https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
An estimate of the inflation factor and analysis sensitivity in the ensemble Kalman filter
Guocan Wu and Xiaogu Zheng
Nonlin. Processes Geophys., 24, 329–341, https://doi.org/10.5194/npg-24-329-2017,https://doi.org/10.5194/npg-24-329-2017, 2017
Short summary
A global carbon assimilation system using a modified ensemble Kalman filter
S. Zhang, X. Zheng, J. M. Chen, Z. Chen, B. Dan, X. Yi, L. Wang, and G. Wu
Geosci. Model Dev., 8, 805–816, https://doi.org/10.5194/gmd-8-805-2015,https://doi.org/10.5194/gmd-8-805-2015, 2015
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41, https://doi.org/10.5194/npg-28-23-2021,https://doi.org/10.5194/npg-28-23-2021, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500, https://doi.org/10.5194/npg-27-489-2020,https://doi.org/10.5194/npg-27-489-2020, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487, https://doi.org/10.5194/npg-27-473-2020,https://doi.org/10.5194/npg-27-473-2020, 2020
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-38,https://doi.org/10.5194/npg-2020-38, 2020
Revised manuscript accepted for NPG
Short summary

Cited articles

Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A, 59, 210–224, 2007.
Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Bishop, C. H. and Toth, Z.: Ensemble transformation and adaptive observations, J. Atmos. Sci., 56, 1748–1765, 1999.
Bishop, C. H., Etherton, J., and Majumdar, J.: Adaptive sampling with the ensemble transform Kalman filte. Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436, 2001.