Articles | Volume 21, issue 5
https://doi.org/10.5194/npg-21-955-2014
https://doi.org/10.5194/npg-21-955-2014
Research article
 | 
23 Sep 2014
Research article |  | 23 Sep 2014

Improving the ensemble transform Kalman filter using a second-order Taylor approximation of the nonlinear observation operator

G. Wu, X. Yi, L. Wang, X. Liang, S. Zhang, X. Zhang, and X. Zheng

Related authors

PM2.5 concentrations based on near-surface visibility in the Northern Hemisphere from 1959 to 2022
Hongfei Hao, Kaicun Wang, Guocan Wu, Jianbao Liu, and Jing Li
Earth Syst. Sci. Data, 16, 4051–4076, https://doi.org/10.5194/essd-16-4051-2024,https://doi.org/10.5194/essd-16-4051-2024, 2024
Short summary
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024,https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Assimilating shallow soil moisture observations into land models with a water budget constraint
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020,https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
An estimate of the inflation factor and analysis sensitivity in the ensemble Kalman filter
Guocan Wu and Xiaogu Zheng
Nonlin. Processes Geophys., 24, 329–341, https://doi.org/10.5194/npg-24-329-2017,https://doi.org/10.5194/npg-24-329-2017, 2017
Short summary
A global carbon assimilation system using a modified ensemble Kalman filter
S. Zhang, X. Zheng, J. M. Chen, Z. Chen, B. Dan, X. Yi, L. Wang, and G. Wu
Geosci. Model Dev., 8, 805–816, https://doi.org/10.5194/gmd-8-805-2015,https://doi.org/10.5194/gmd-8-805-2015, 2015
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A, 59, 210–224, 2007.
Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, 2009.
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Bishop, C. H. and Toth, Z.: Ensemble transformation and adaptive observations, J. Atmos. Sci., 56, 1748–1765, 1999.
Bishop, C. H., Etherton, J., and Majumdar, J.: Adaptive sampling with the ensemble transform Kalman filte. Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436, 2001.