Articles | Volume 26, issue 4
https://doi.org/10.5194/npg-26-359-2019
https://doi.org/10.5194/npg-26-359-2019
Review article
 | 
08 Oct 2019
Review article |  | 08 Oct 2019

Numerical bifurcation methods applied to climate models: analysis beyond simulation

Henk A. Dijkstra

Related authors

Physics of AMOC multistable regime shifts due to freshwater biases in an EMIC
Amber A. Boot and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-758,https://doi.org/10.5194/egusphere-2025-758, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
An idealized model for the spatial structure of the eddy-driven Ferrel cell in mid-latitudes
Woosok Moon, Seung Pyo Lee, Elian Vanderborght, Georgy Manucharyan, and Henk Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-1004,https://doi.org/10.5194/egusphere-2025-1004, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta
Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
Ocean Sci., 21, 261–281, https://doi.org/10.5194/os-21-261-2025,https://doi.org/10.5194/os-21-261-2025, 2025
Short summary
A Saddle-Node Bifurcation is Causing the AMOC Collapse in the Community Earth System Model
René M. van Westen, Elian Vanderborght, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-14,https://doi.org/10.5194/egusphere-2025-14, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Physical characterization of the boundary separating safe and unsafe AMOC overshoot behaviour
Aurora Faure Ragani and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-45,https://doi.org/10.5194/egusphere-2025-45, 2025
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Solving a North-type energy balance model using boundary integral methods
Aksel Samuelsberg and Per Kristen Jakobsen
Nonlin. Processes Geophys., 32, 23–33, https://doi.org/10.5194/npg-32-23-2025,https://doi.org/10.5194/npg-32-23-2025, 2025
Short summary
Finite-size local dimension as a tool for extracting geometrical properties of attractors of dynamical systems
Martin Bonte and Stéphane Vannitsem
EGUsphere, https://doi.org/10.5194/egusphere-2024-3915,https://doi.org/10.5194/egusphere-2024-3915, 2024
Short summary
Dynamically optimal models of atmospheric motion
Alexander G. Voronovich
Nonlin. Processes Geophys., 31, 559–569, https://doi.org/10.5194/npg-31-559-2024,https://doi.org/10.5194/npg-31-559-2024, 2024
Short summary
A robust numerical method for the generation and propagation of periodic finite-amplitude internal waves in natural waters using high-accuracy simulations
Pierre Lloret, Peter J. Diamessis, Marek Stastna, and Greg N. Thomsen
Nonlin. Processes Geophys., 31, 515–533, https://doi.org/10.5194/npg-31-515-2024,https://doi.org/10.5194/npg-31-515-2024, 2024
Short summary
Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea
Linghan Meng, Haibin Song, Yongxian Guan, Shun Yang, Kun Zhang, and Mengli Liu
Nonlin. Processes Geophys., 31, 477–495, https://doi.org/10.5194/npg-31-477-2024,https://doi.org/10.5194/npg-31-477-2024, 2024
Short summary

Cited articles

Abraham, R. and Shaw, C.: Dynamics: The Geometry of Behavior, Addison-Wesley, Redwood City, California, USA, 1992. a
Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system, Philos. T. Roy. Soc. A, 370, 1166–1184, 2012. a
Baars, S., Viebahn, J. P., Mulder, T. E., Kuehn, C., Wubs, F. W., and Dijkstra, H. A.: Continuation of probability density functions using a generalized Lyapunov approach, J. Comput. Phys., 336, 627–643, 2017. a, b, c
Berloff, P. S., Hogg, A. M., and Dewar, W. K.: The turbulent oscillator: a mechanism of low-frequency variability of the wind-driven ocean gyres, J. Phys. Oceanogr., 37, 2362–2386, 2007. a
Castellana, D., Wubs, F., and Dijkstra, H.: A statistical significance test for sea-level variability, Dynamics and Statistics of the Climate System, 3, dzy008, https://doi.org/10.1093/climsys/dzy008, 2018. a
Download
Short summary
I provide a personal view on the role of bifurcation analysis of climate models in the development of a theory of variability in the climate system. By outlining the state of the art of the methodology and by discussing what has been done and what has been learned from a hierarchy of models, I will argue that there are low-order phenomena of climate variability, such as El Niño and the Atlantic Multidecadal Oscillation.
Share