Articles | Volume 25, issue 2
Research article
27 Apr 2018
Research article |  | 27 Apr 2018

Wave propagation in the Lorenz-96 model

Dirk L. van Kekem and Alef E. Sterk

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
On the interaction of stochastic forcing and regime dynamics
Joshua Dorrington and Tim Palmer
Nonlin. Processes Geophys., 30, 49–62,,, 2023
Short summary
Applying dynamical systems techniques to real ocean drifters
Irina I. Rypina, Timothy Getscher, Lawrence J. Pratt, and Tamay Ozgokmen
Nonlin. Processes Geophys., 29, 345–361,,, 2022
Short summary
Observations of shoaling internal wave transformation over a gentle slope in the South China Sea
Steven R. Ramp, Yiing Jang Yang, Ching-Sang Chiu, D. Benjamin Reeder, and Frederick L. Bahr
Nonlin. Processes Geophys., 29, 279–299,,, 2022
Short summary
Climate bifurcations in a Schwarzschild equation model of the Arctic atmosphere
Kolja L. Kypke, William F. Langford, Gregory M. Lewis, and Allan R. Willms
Nonlin. Processes Geophys., 29, 219–239,,, 2022
Short summary
Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation
Karl R. Helfrich and Lev Ostrovsky
Nonlin. Processes Geophys., 29, 207–218,,, 2022
Short summary

Cited articles

Avila, M., Meseguer, A., and Marqués, F.: Double Hopf bifurcation in corotating spiral Poiseuille flow, Phys. Fluids, 18, 064101,, 2006.
Basnarkov, L. and Kocarev, L.: Forecast improvement in Lorenz 96 system, Nonlin. Processes Geophys., 19, 569–575,, 2012.
Basto, M., Semiao, V., and Calheiros, F.: Dynamics in spectral solutions of Burgers equation, J. Comput. Appl. Math., 205, 296–304, 2006.
Beyn, W., Champneys, A., Doedel, E., Kuznetsov, Y., Govaerts, W., and Sandstede, B.: Numerical continuation, and computation of normal forms, in: Handbook of Dynamical Systems, Volume 2, edited by: Fiedler, B., Elsevier, Amsterdam, 149–219, 2002.
Danforth, C. and Yorke, J.: Making Forecasts for Chaotic Physical Processes, Phys. Rev. Lett., 96, 144102,, 2006.
Short summary
In this paper we investigate the spatiotemporal properties of waves in the Lorenz-96 model. In particular, we explain how these properties are related to the presence of Hopf and pitchfork bifurcations. We also explain bifurcation scenarios by which multiple stable waves can coexist for the same parameter values.