Articles | Volume 25, issue 2
https://doi.org/10.5194/npg-25-301-2018
https://doi.org/10.5194/npg-25-301-2018
Research article
 | 
27 Apr 2018
Research article |  | 27 Apr 2018

Wave propagation in the Lorenz-96 model

Dirk L. van Kekem and Alef E. Sterk

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
The role of time-varying external factors in the intensification of tropical cyclones
Samuel Watson and Courtney Quinn
Nonlin. Processes Geophys., 31, 381–394, https://doi.org/10.5194/npg-31-381-2024,https://doi.org/10.5194/npg-31-381-2024, 2024
Short summary
A robust numerical method for the generation and simulation of periodic finite-amplitude internal waves in natural waters
Pierre Lloret, Peter J. Diamessis, Marek Stastna, and Greg N. Thomsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1121,https://doi.org/10.5194/egusphere-2024-1121, 2024
Short summary
Transformation of internal solitary waves at the edge of ice cover
Kateryna Terletska, Vladimir Maderich, and Elena Tobisch
Nonlin. Processes Geophys., 31, 207–217, https://doi.org/10.5194/npg-31-207-2024,https://doi.org/10.5194/npg-31-207-2024, 2024
Short summary
Review article: Interdisciplinary perspectives on climate sciences – highlighting past and current scientific achievements
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024,https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Variational techniques for a one-dimensional energy balance model
Gianmarco Del Sarto, Jochen Bröcker, Franco Flandoli, and Tobias Kuna
Nonlin. Processes Geophys., 31, 137–150, https://doi.org/10.5194/npg-31-137-2024,https://doi.org/10.5194/npg-31-137-2024, 2024
Short summary

Cited articles

Avila, M., Meseguer, A., and Marqués, F.: Double Hopf bifurcation in corotating spiral Poiseuille flow, Phys. Fluids, 18, 064101, https://doi.org/10.1063/1.2204967, 2006.
Basnarkov, L. and Kocarev, L.: Forecast improvement in Lorenz 96 system, Nonlin. Processes Geophys., 19, 569–575, https://doi.org/10.5194/npg-19-569-2012, 2012.
Basto, M., Semiao, V., and Calheiros, F.: Dynamics in spectral solutions of Burgers equation, J. Comput. Appl. Math., 205, 296–304, 2006.
Beyn, W., Champneys, A., Doedel, E., Kuznetsov, Y., Govaerts, W., and Sandstede, B.: Numerical continuation, and computation of normal forms, in: Handbook of Dynamical Systems, Volume 2, edited by: Fiedler, B., Elsevier, Amsterdam, 149–219, 2002.
Danforth, C. and Yorke, J.: Making Forecasts for Chaotic Physical Processes, Phys. Rev. Lett., 96, 144102, https://doi.org/10.1103/PhysRevLett.96.144102, 2006.
Download
Short summary
In this paper we investigate the spatiotemporal properties of waves in the Lorenz-96 model. In particular, we explain how these properties are related to the presence of Hopf and pitchfork bifurcations. We also explain bifurcation scenarios by which multiple stable waves can coexist for the same parameter values.