Articles | Volume 22, issue 3
https://doi.org/10.5194/npg-22-275-2015
https://doi.org/10.5194/npg-22-275-2015
Research article
 | 
07 May 2015
Research article |  | 07 May 2015

Oscillations in a simple climate–vegetation model

J. Rombouts and M. Ghil

Related authors

Review article: Dynamical systems, algebraic topology and the climate sciences
Michael Ghil and Denisse Sciamarella
Nonlin. Processes Geophys., 30, 399–434, https://doi.org/10.5194/npg-30-399-2023,https://doi.org/10.5194/npg-30-399-2023, 2023
Short summary
Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022,https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Abrupt climate changes and the astronomical theory: are they related?
Denis-Didier Rousseau, Witold Bagniewski, and Michael Ghil
Clim. Past, 18, 249–271, https://doi.org/10.5194/cp-18-249-2022,https://doi.org/10.5194/cp-18-249-2022, 2022
Short summary
Brief communication: An innovation-based estimation method for model error covariance in Kalman filters
Eviatar Bach and Michael Ghil
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2021-35,https://doi.org/10.5194/npg-2021-35, 2021
Preprint withdrawn
Short summary
Review article: Hilbert problems for the climate sciences in the 21st century – 20 years later
Michael Ghil
Nonlin. Processes Geophys., 27, 429–451, https://doi.org/10.5194/npg-27-429-2020,https://doi.org/10.5194/npg-27-429-2020, 2020
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Dynamically optimal models of atmospheric motion
Alexander G. Voronovich
Nonlin. Processes Geophys., 31, 559–569, https://doi.org/10.5194/npg-31-559-2024,https://doi.org/10.5194/npg-31-559-2024, 2024
Short summary
A robust numerical method for the generation and propagation of periodic finite-amplitude internal waves in natural waters using high-accuracy simulations
Pierre Lloret, Peter J. Diamessis, Marek Stastna, and Greg N. Thomsen
Nonlin. Processes Geophys., 31, 515–533, https://doi.org/10.5194/npg-31-515-2024,https://doi.org/10.5194/npg-31-515-2024, 2024
Short summary
Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea
Linghan Meng, Haibin Song, Yongxian Guan, Shun Yang, Kun Zhang, and Mengli Liu
Nonlin. Processes Geophys., 31, 477–495, https://doi.org/10.5194/npg-31-477-2024,https://doi.org/10.5194/npg-31-477-2024, 2024
Short summary
The role of time-varying external factors in the intensification of tropical cyclones
Samuel Watson and Courtney Quinn
Nonlin. Processes Geophys., 31, 381–394, https://doi.org/10.5194/npg-31-381-2024,https://doi.org/10.5194/npg-31-381-2024, 2024
Short summary
Solving a North-type energy balance model using boundary integral methods
Aksel Samuelsberg and Per Kristen Jakobsen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-11,https://doi.org/10.5194/npg-2024-11, 2024
Revised manuscript accepted for NPG
Short summary

Cited articles

Adams, B., Carr, J., Lenton, T. M., and White, A.: One-dimensional daisyworld: spatial interactions and pattern formation, J. Theor. Biol., 223, 505–513, https://doi.org/10.1016/S0022-5193(03)00139-5, 2003.
Aleina, F. C., Baudena, M., D'Andrea, F., and Provenzale, A.: Multiple equilibria on planet Dune: climate–vegetation dynamics on a sandy planet, Tellus B, 65, 17662, https://doi.org/10.3402/tellusb.v65i0.17662, 2013.
Andronov, A., Vitt, A., and Khaikin, A.: Theory of Oscillators, Pergamon, Oxford, 1966.
Ayers, G. P. and Cainey, J. M.: The CLAW hypothesis: a review of the major developments, Environ. Chem., 4, 366–374, 2007.
Bhattacharya, K., Ghil, M., and Vulis, I. L.: Internal variability of an energy-balance model with delayed albedo effects, J. Atmos. Sci., 39, 1747–1773, 1982.
Download
Short summary
Our conceptual model describes global temperature and vegetation extent. We use elements from Daisyworld and classical energy balance models and add an ocean with sea ice. The model exhibits oscillatory behavior within a plausible range of parameter values. Its periodic solutions have sawtooth behavior that is characteristic of relaxation oscillations, as well as suggestive of Quaternary glaciation cycles. The model is one of the simplest of its kind to produce such oscillatory behavior.