Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-287-2024
https://doi.org/10.5194/npg-31-287-2024
Research article
 | 
01 Jul 2024
Research article |  | 01 Jul 2024

Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)

Man-Yau Chan

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Evolution of small-scale turbulence at large Richardson numbers
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024,https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023,https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary
Using orthogonal vectors to improve the ensemble space of the ensemble Kalman filter and its effect on data assimilation and forecasting
Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee
Nonlin. Processes Geophys., 30, 289–297, https://doi.org/10.5194/npg-30-289-2023,https://doi.org/10.5194/npg-30-289-2023, 2023
Short summary

Cited articles

Amezcua, J. and Van Leeuwen, P. J.: Gaussian anamorphosis in the analysis step of the EnKF: a joint state-variable/observation approach, Tellus A, 66, 23493, https://doi.org/10.3402/tellusa.v66.23493, 2014. a
Anderson, J. L.: A Local Least Squares Framework for Ensemble Filtering, Mon. Weather Rev., 131, 634–642, https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2, 2003. a, b, c
Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61A, 72–83, https://doi.org/10.1111/j.1600-0870.2008.00361.x, 2009. a
Anderson, J. L.: A Non-Gaussian Ensemble Filter Update for Data Assimilation, Mon. Weather Rev., 138, 4186–4198, https://doi.org/10.1175/2010MWR3253.1, 2010. a, b, c, d
Anderson, J. L.: A marginal adjustment rank histogram filter for non-Gaussian ensemble data assimilation, Mon. Weather Rev., 148, 3361–3378, https://doi.org/10.1175/MWR-D-19-0307.1, 2020. a
Download
Short summary
Forecasts have uncertainties. It is thus essential to reduce these uncertainties. Such reduction requires uncertainty quantification, which often means running costly models multiple times. The cost limits the number of model runs and thus the quantification’s accuracy. This study proposes a technique that utilizes users’ knowledge of forecast uncertainties to improve uncertainty quantification. Tests show that this technique improves uncertainty reduction.