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S1. Ensemble modulation results in non-Gaussian
expanded ensemble statistics

Ensemble modulation constructs an expanded ensemble by
combining a localization matrix with forecast ensemble per-
turbations (Bishop and Hodyss, 2009, 2011; Bishop et al.,
2017). This is done by taking Schur products (i.e., element-
wise products) between 1) forecast ensemble perturbations
and 2) the columns of a square-root of the localization ma-
trix. In this appendix, it will be shown that if the forecast
10 ensemble has Gaussian statistics, the expanded ensemble
(henceforth, the modulated ensemble) is likely to possess
non-Gaussian statistics.
Suppose the localization matrix ® is an N, x N, posi-
tive semi-definite symmetric matrix with rank N, L is an
15 N X N, matrix square root of the localization matrix (i.e.,
&=LL"), N,> Ng and N, > N;. Supposing £, is the
m-th column of L and !, is the n-th forecast ensemble per-
turbation, a modulated ensemble perturbation v;e (k=mn)
can be created from /,,, and «/, by (Bishop et al., 2017)
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where o represents the element-wise product. For simplicity,

suppose Ng > 1. Then,

v~V Nplmox, Vk=1,2,...,

To show that v}, has non-Gaussian statistics, consider the
moments of some g-th element in the modulated ensemble
perturbation vector. Supposing %7 o 18 the g-th element of vy,
the p-th central moment of vj, , can be written as
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For simplicity, assume N is sufficiently large such that the
above expression is an approximately unbiased estimator for
{(v})"). Substituting Eq. (S2) into Eq. (S3) gives
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where /,, , is the g-th element of £,,, and 27, g is the g-th

s element of ], . Applying some algebraic manipulation yields
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Figure S1. A plot of the modulated ensemble’s kurtosis as a func-
tion of normalized localization length scale (solid red curve). The
kurtosis of the modulated ensemble for infinite normalized localiza-
tion length scale is indicated by the dashed red line.

where <(:v/g)p> is the p-th central moment of state vector el-
ement g in the forecast ensemble.

The non-Gaussian characteristics of the modulated en-
semble perturbations can be inferred from kurtosis (K urt),
which is

(56)

Since the modulated ensemble’s variance is identical to the
original ensemble’s variance,

Ny,
Kurt (v) ~ Ny [Z (emyg)‘*} L (S7)
m=1
The fraction is simply the kurtosis of the original ensemble.
Thus,

(S8)

Kurt (vy) = Ny, [Z (€m79)41 Kurt (7)) .
m=1

If the forecast ensemble is drawn from a Gaussian

distribution (the kurtosis is always 3), for Ng > 1,

Kurt (z),) ~ 3. However, Eq. (S8) states that Kurt (v]) is

NL [ Yo ()]
tosis (= 3). This implies the modulated ensemble is likely
non-Gaussian.

To illustrate, suppose the localization matrix is simply
an N, x N, identity matrix. This means Ny = N, and L
is also an IV, x IV, identity matrix. Supposing 6., 4 is the

times of the forecast ensemble’s kur-
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Kronecker-delta, the kurtosis of the modulated ensemble is

Kurt (v [Z Sm g] Kurt (z})
= N, Kurt (z})) = 3N,. (S9)
In other words,
s Kurt (v)) > 3. (S10)

Since the kurtosis of a Gaussian distribution is 3, the modu-
lated ensemble has non-Gaussian statistics.
The ensemble modulation method is also explored numer-
ically using a periodic domain with N, = 1000, Ng = 100,
w0 and a variety of localization matrices (with Gaussian lo-
calization functions). The original ensemble members are
drawn from a N, -dimensional Gaussian distribution with
zero mean and identity covariance. Every localization ma-
trix has a unique localization length scale (i.e., the "standard
1s deviation" in the Gaussian localization function). In general,
Kurt (v}) decreases from 3V, (= 3000) towards a value of
3 (i.e., the Gaussian value) as the localization length scale
increases (see Fig. S1). These tests demonstrate that for a
large range of (commonly used) localization length scales,
20 ensemble modulation turns Gaussian-distributed ensembles
into ensembles with non-Gaussian statistics.
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