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Abstract. Small forecast ensemble sizes (< 100) are common in the ensemble data assimilation (EnsDA) com-
ponent of geophysical forecast systems, thus limiting the error-constraining power of EnsDA. This study pro-
poses an efficient and embarrassingly parallel method to generate additional ensemble members: the Probit-space
Ensemble Size Expansion for Gaussian Copulas (PESE-GC; “peace gee see”). Such members are called “vir-
tual members”. PESE-GC utilizes the users’ knowledge of the marginal distributions of forecast model variables.
Virtual members can be generated from any (potentially non-Gaussian) multivariate forecast distribution that has
a Gaussian copula. PESE-GC’s impact on EnsDA is evaluated using the 40-variable Lorenz 1996 model, several
EnsDA algorithms, several observation operators, a range of EnsDA cycling intervals, and a range of forecast
ensemble sizes. Significant improvements to EnsDA (p < 0.01) are observed when either (1) the forecast en-
semble size is small (≤ 20 members), (2) the user selects marginal distributions that improve the forecast model
variable statistics, and/or (3) the rank histogram filter is used with non-parametric priors in high-forecast-spread
situations. These results motivate development and testing of PESE-GC for EnsDA with high-order geophysical
models.

1 Introduction

Geophysical forecast models are often computationally ex-
pensive to run. As a result, geophysical ensemble data as-
similation (EnsDA) typically uses < 100 forecast ensemble
members. Such small forecast ensemble sizes result in sam-
pling errors that degrade the performance of EnsDA. As
such, low-cost methods that introduce additional ensemble
members (henceforth virtual members) to the original fore-
cast members (henceforth forecast members) have the poten-
tial to improve EnsDA.

Several types of ensemble expansion methods have been
proposed in the literature, all of which have strengths and
weaknesses. The first type is random draws from climatol-
ogy (Castruccio et al., 2020; El Gharamti, 2020; Lei et al.,
2021). Though computationally efficient, this type of ensem-

ble expansion method cannot generate members with flow-
dependent ensemble statistics.

An alternative type of ensemble expansion method is to
aggregate forecast ensemble members across time (Xu et al.,
2008; Yuan et al., 2009; Huang and Wang, 2018; Gasper-
oni et al., 2022). Though this type of method efficiently pro-
duces members with flow-dependent statistics, the number of
virtual members created is limited (Huang and Wang, 2018;
Gasperoni et al., 2022).

A third type of ensemble expansion method is to search
a historical catalog for forecast states similar to the cur-
rent forecast or observations (Van den Dool, 1994; Tippett
and Delsole, 2013; Monache et al., 2013; Wan and Van
Der Merwe, 2000; Grooms, 2021; Sun et al., 2022). The vir-
tual members resulting from this search have flow-dependent
statistics. Though such methods are historically expensive to
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employ, ongoing research may render them affordable in the
near future (e.g., Sun et al., 2024).

Ensemble modulation (Bishop and Hodyss, 2009, 2011;
Bishop et al., 2017; Kotsuki and Bishop, 2022; Wang et al.,
2021) is the fourth type of the ensemble expansion method.
Such methods expand ensembles by combining a localiza-
tion matrix with the original ensembles’ perturbations (see
Bishop and Hodyss, 2009, for details). Though the expanded
ensemble possesses the same mean and variance as the origi-
nal ensemble, the expanded ensemble’s kurtosis can be much
larger than the original ensemble’s (see the Supplement). In
other words, the expanded ensemble’s kurtosis is likely bi-
ased. If nonlinear observation operators are applied to the
expanded ensemble, this kurtosis bias will result in biased
expanded ensemble observation statistics (Craig Bishop and
Lili Lei, personal communication, 2023).

The shortcomings of existing ensemble expansion meth-
ods motivate the development of a new ensemble expan-
sion method. This study proposes a new ensemble expan-
sion method that explicitly utilizes the users’ knowledge of
prior marginals, the Probit-space Ensemble Size Expansion
for Gaussian Copulas (PESE-GC). PESE-GC constructs vir-
tual members using a generalization of the efficient and scal-
able Gaussian resampling algorithm of Chan et al. (2020)
(henceforth the CAC2020 algorithm). Unlike existing meth-
ods, PESE-GC efficiently and scalably generates an unlim-
ited number of virtual members with flow-dependent statis-
tics. Furthermore, the PESE-GC produces virtual members
that are consistent with user-specified prior marginals and
handles multivariate Gaussian distributions and many multi-
variate non-Gaussian distributions. PESE-GC is applied be-
fore running any observation operators for EnsDA, and the
analyzed virtual members are discarded before generating
the next forecast ensemble (see Fig. 1). To the author’s
knowledge, no other ensemble expansion methods simulta-
neously possesses the same efficiency, scalability, generality,
and flow-dependency as PESE-GC.

The remainder of this publication is divided into five sec-
tions. Section 2 discusses the formulation of PESE-GC and
its computational complexity and scalability. PESE-GC’s im-
pacts on EnsDA are discussed and illustrated in Sect. 3.
PESE-GC is then tested with EnsDA using the Lorenz 1996
(L96) model in Sect. 4. Section 5 discusses an important
caveat and the computational economy of the PESE-GC
method. This publication then ends with Sect. 6 and a sum-
mary and a discussion of avenues for future research therein.

2 Formulation of PESE-GC

This section begins with reviewing the CAC2020 algorithm.
The CAC2020 algorithm is then generalized to handle arbi-
trary piecewise continuous marginal distributions (i.e., one-
dimensional distributions) using probit probability integral

Figure 1. An illustration of how PESE-GC can be integrated into a
typical EnsDA cyclic workflow. This workflow is meant to be read
starting from the green box labeled START. The arrows indicate the
movement of various kinds of information (see legend). For exam-
ple, the fat orange arrows indicate that the virtual members are cre-
ated by PESE-GC (red polygon), passed to the observation opera-
tors (rounded purple box), passed to the EnsDA algorithm (rounded
brown box), and then removed before applying the forecast model
(black polygon). Obs stands for observation and ens stands for en-
semble.

(PPI) transforms. Finally, the computational complexity and
scalability of PESE-GC is discussed.

2.1 The CAC2020 algorithm

The CAC2020 algorithm constructs Gaussian-distributed vir-
tual members through linear combinations of the forecast en-
semble perturbations. The resulting expanded ensemble has
the same mean state and covariance matrix as the forecast
ensemble. The CAC2020 algorithm was first formulated by
Chan et al. (2020), and a more comprehensive derivation is
presented in Chap. 7 of Chan (2022).

To write down the CAC2020 algorithm, a notation sim-
ilar to Ide et al. (1997) is used. Suppose x is an Nx-
dimensional column vector representing a forecast model
state, and

{
xf

1,x
f
2. . .x

f
NE

}
represents an ensemble ofNE fore-

cast model states.

xf′
n ≡ x

f
n−

1
NE

NE∑
n′=1

xf
n′ ∀n= 1,2, . . .,NE (1)

NV virtual members,
{
xv

1,x
v
2, . . .,x

v
NV

}
, are constructed.

xv′
m ≡ x

v
m−

1
NV

NV∑
m′=1

xv
m′ ∀m= 1,2, . . .,NV (2)
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Note that the mean of the virtual members is the same as the
mean of the forecast members. In other words, the following
applies:

1
NV

NV∑
m=1

xv
m =

1
NE

NE∑
n=1

xf
n. (3)

2.1.1 Step 1 of the CAC2020 algorithm

The CAC2020 algorithm constructs NV virtual members
from NE ensemble members using a three-step procedure.
First, an NE×NV matrix of linear combination coefficients
(E) is generated by evaluating

E≡ γ 1NE×NV +LCE

{
LWW>

}−1W. (4)

Here, we have

γ ≡
1
NV

(√
NE+NV− 1
NE− 1

− 1

)
, (5)

where 1NE×NV is an NE×NV matrix of ones, LCE is a lower-
triangular matrix obtained from the Cholesky decomposition
of CE (note that CE = LCE

(
LCE

)>), and CE is an NE×NE
matrix defined by

CE ≡
NV

NE− 1
INE − γ

2NV1NE×NE . (6)

INE is the NE×NE identity matrix, 1NE×NE is an NE×NE
matrix where every element is 1, LWW> is a lower-triangular
matrix obtained from the Cholesky decomposition of WW>

(note that WW> = LWW>
(
LWW>

)>), and W is an NE×NV
matrix whose (i,j )th element is defined by

Wi,j = ωi,j −
1
NV

NV∑
`=1

ωi,`, (7)

where every ωi,j is identically and independently distributed
(i.i.d.) samples drawn from the standard normal distribution.
In other words, every ωi,j is mutually independent.

2.1.2 Step 2 of the CAC2020 algorithm

The CAC2020 algorithm’s second step is to generate{
xv′

1 ,x
v′
2 , . . .,x

v′
NV

}
by evaluating[

xv′
1 · · · xv′

NV

]
=

[
xf′

1 · · · xf′
NE

]
E. (8)

2.1.3 Step 3 of the CAC2020 algorithm

In the third and final step, the CAC2020 algorithm generates{
xv

1,x
v
2, . . .,x

v
NV

}
by evaluating

xv
m ≡ x

v′
m+

1
NE

NE∑
n′=1

xf
n′ ∀m= 1,2, . . .,NV. (9)

Figure 2. Plots demonstrating the impacts of various heuristic
choices in the formulation of PESE-GC. Panels (a) and (b), respec-
tively, demonstrate drawing virtual members using CAC2020’s W
(Eq. 7) and CAC2023’s W (Eq. 10). The former produces Gaus-
sian virtual members, while the latter produces non-Gaussian vir-
tual members. Panels (c) and (d) demonstrate the importance of
ensuring that the forecast ensemble in probit space has unit vari-
ance. If the probit-space forecast ensemble’s variance is not unity,
the virtual members generated by PESE-GC will deviate from the
fitted marginal PDFs (rank histogram in the case of panels c and d).

2.1.4 On W used in the CAC2020 algorithm’s step 1

Note that this study’s (and the CAC2020’s) W differs from
that of Chan et al. (2023) (henceforth CAC2023). This is be-
cause the CAC2023’s W (defined in Eq. 6 of CAC2023) gen-
erates virtual members with undesirable non-Gaussian prop-
erties. The CAC2023’s W can be written as

Wij ≡ δi,j −
1
NV

, (10)

where δi,j is the Kronecker delta.
To illustrate the issue with the CAC2023’s W, suppose

five forecast members are drawn from a standard normal dis-
tribution and 107 virtual members are generated using the
CAC2020 algorithm with the CAC2023’s W. Though the
expanded ensemble’s mean and variance are correct (zero
and unity, respectively), the virtual members’ histogram-
estimated PDF (blue curve in Fig. 2b) is incorrect (not stan-
dard normal). In contrast, using the W defined in Eq. (7) re-
sults in virtual members that follow the standard normal PDF
(Fig. 2a). As such, this study uses the CAC2020’s W instead
of the CAC2023’s W.

2.1.5 Properties of the CAC2020 algorithm

The CAC2020 algorithm is efficient and scales well with
parallel computing. This is because steps 2 and 3 of the
CAC2020 algorithm (Sect. 2.1.2 and 2.1.3) are embarrass-
ingly parallel and have computational complexities that scale
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linearly with Nx . If E is generated offline (i.e., not part of the
EnsDA procedure) and then read into the EnsDA program,
the CAC2020 algorithm is reduced to only evaluating steps 2
and 3.

The CAC2020 algorithm also produces expanded ensem-
bles with same ensemble means and ensemble covariances
as the forecast ensembles. In other words, the rank of the ex-
panded ensemble’s covariance matrix is the same as that of
the forecast ensemble. Future work can explore ways to in-
corporate localization into the expanded ensemble’s covari-
ance matrix.

Furthermore, the CAC2020 algorithm always generates
Gaussian-distributed virtual members; even if the actual fore-
cast distribution is highly non-Gaussian, the virtual mem-
bers’ distribution will still be Gaussian. The CAC2020 al-
gorithm thus degrades the ensemble statistics in situations
where the forecast distribution is non-Gaussian. This degra-
dation limits the usefulness of the CAC2020 algorithm for
situations with non-Gaussian forecast distributions.

Note that, except for the mean and covariance, the ex-
panded ensemble’s central moments (i.e., higher-order mo-
ments; e.g., skewness) likely differ from the forecast en-
semble’s. More specifically, the expanded ensemble’s cen-
tral moments will be closer to those of Gaussian distribu-
tions (e.g., zero skewness) than the forecast ensemble’s cen-
tral moments. This is because the virtual members are ef-
fectively drawn from a Gaussian distribution. If the forecast
distribution is indeed a Gaussian distribution, then the ex-
panded ensemble likely has better moments than the forecast
ensemble.

2.2 The PESE-GC procedure

The CAC2020 algorithm is limited to generating Gaussian-
distributed virtual members. PESE-GC overcomes this lim-
itation by combining probit probability integral (PPI) trans-
forms and their inverses with the CAC2020 algorithm. A PPI
transform transforms any univariate distribution with a con-
tinuous CDF into a standard normal distribution, and the in-
verse PPI transform reverses the process. The quantity result-
ing from applying the PPI transform on a random variable is
called “probit” and the coordinate space occupied by probits
is called “probit space”. Such transforms are often used in
Gaussian anamorphosis (Amezcua and Van Leeuwen, 2014;
Grooms, 2022).

To define the PPI transform, suppose Fi (xi) represents the
CDF of the ith model variable, xi (i = 1,2, . . .,Nx); 8−1 (q)
represents the inverse CDF of the standard normal (q repre-
sents any quantile); and φi represents the ith model probit.
The double appearance of index i in Fi (xi) is deliberate –
the CDF varies with the chosen model variable. Note that
8−1 (q) is sometimes called the probit function or the quan-
tile function of the standard normal. The conversion from xi

Figure 3. Illustrations of PESE-GC’s four-stage algorithm. Panels
(a), (b), (c), and (d), respectively, show the aftermath of stages 1,
2, 3, and 4. The details of these stages are described in Sect. 2.2.
Note that the CAC2020 algorithm is applied in stage 3 (i.e., between
panels c and d).

to φi (i.e., the PPI transform) is

φi ≡8
−1 ( Fi (xi) ) . (11)

The inverse PPI transform (i.e., converting φi to xi) is

xi ≡ F
−1
i ( 8 (φi) ) . (12)

The PPI transform generalizes the CAC2020 algorithm
to handle non-Gaussian forecast ensembles. The resulting
PESE-GC procedure has four stages and is illustrated in
Fig. 3. These four stages are as follows:

1. For each model state variable, fit a user-specified uni-
variate distribution to that model variable in the forecast
ensemble (i.e., marginal distribution fitting).

2. For each model state variable, apply the PPI transform
(Eq. 11) using that variable’s fitted distribution to con-
vert the forecast ensemble of that model variable into
forecast probits.

3. For each model state variable, adjust the mean and vari-
ance of that variable’s forecast ensemble probits to zero
and unity, respectively (explained in Sect. 2.3), and then
apply the CAC2020 algorithm on that variable’s fore-
cast probits to generate virtual probits.
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4. For each model state variable, apply the inverse PPI
transform (Eq. (12) with stage 1’s fitted distribution on
that variable’s virtual probits to generate that variable’s
virtual ensemble.

To be clear, the CAC2020 algorithm is implemented and used
in stage 3.

Note that this four-stage procedure assumes that the multi-
variate forecast distribution is Gaussian in probit space. This
assumption arises from the use of a Gaussian resampling al-
gorithm (the CAC2020 algorithm) to generate virtual probits.
This assumption is equivalent to assuming that the multivari-
ate forecast distribution has a Gaussian copula. As such, this
four-stage procedure is called Probit-space Ensemble Size
Expansion for Gaussian Copulas.

PESE-GC’s four-stage procedure is attractive for geophys-
ical EnsDA for several reasons. Aside from the fact that it
can generate non-Gaussian virtual members, PESE-GC can
be implemented in an embarrassingly parallel fashion (every
loop over the model state variables is embarrassingly par-
allel). Furthermore, PESE-GC is likely affordable for geo-
physical EnsDA because the CAC2020 algorithm (stage 3) is
efficient (see Sect. 2.1).

Note that the quality of the virtual members depends on
the distributions the user selects in step 1 of PESE-GC. This
will be discussed later in Sect. 3.

2.3 On the mean and variance adjustments in
PESE-GC’s step 3

PESE-GC requires forecast ensemble probits with zero mean
and unity variance. Otherwise, the resulting virtual members
will disobey the marginal distributions fitted in PESE-GC’s
step 1. However, because the forecast ensemble size is fi-
nite, the forecast ensemble’s probits may have non-zero mean
and non-unity variance. To illustrate, suppose PESE-GC is
applied to five univariate forecast ensemble members (red
crosses in Fig. 2c) and a Gaussian-tailed rank histogram dis-
tribution (Anderson, 2010) is fitted to those five members in
PESE-GC’s step 1. Applying the PPI transform (PESE-GC’s
step 2) results in forecast probits with a mean of zero and
a variance of approximately 0.561. Using the CAC2020 al-
gorithm, 107 virtual probits are then generated from these
forecast probits, and the inverse PPI transform is applied
to generate the virtual members (PESE-GC’s step 4). The
histogram-estimated PDF of the virtual members (blue curve
in Fig. 2c) disagrees with the fitted (i.e., desired) Gaussian-
tailed rank histogram PDF.

This problematic disagreement is resolved by adjusting the
forecast probits’ mean and variance to zero and unity (re-
spectively) before generating the virtual members. Suppose
the probit of the nth forecast member for model variable i
is φi,n and the pre-adjusted prior ensemble probit’s sample
mean and sample variance are µ and σ 2, respectively. The

adjustment process is simply

φi,n←
φi,n−µ

σ
∀n= 1,2, . . .,NE. (13)

The impact of this adjustment is illustrated in Fig. 2: the
virtual members’ histogram-estimated PDF (blue curve in
Fig. 2d) now matches the Gaussian-tailed rank histogram
PDF in PESE-GC’s step 1.

3 Conceptual exploration of PESE-GC’s EnsDA
impacts

To understand the influence of PESE-GC on EnsDA, con-
sider a joint model–observation space formulation of Bayes’
rule:

p
(
ψ |yo)

∝ p
(
yo
|ψ
)
p (ψ) , (14)

where yo is an Ny-dimensional vector of observation values,
and

ψ ≡

[
x

h (x)

]
, (15)

where h (x) is the observation operator, p (yo
|ψ) is the ob-

servation likelihood function, and p (ψ) is the prior proba-
bility density function (PDF). The goal of EnsDA is to ob-
tain a posterior ensemble that represents the posterior distri-
bution p (ψ |yo). If PESE-GC alters p (yo

|ψ) and/or p (ψ),
then PESE-GC will influence EnsDA. As such, there are two
potential mechanisms for PESE-GC to influence EnsDA: (1)
alterations to the observation likelihood used by the EnsDA
algorithm and (2) alterations to the prior distribution used by
the EnsDA.

This section explores the influence of PESE-GC on EnsDA
through those two mechanisms. A bivariate example is used
to illustrate those mechanisms. Suppose a scalar forecast
model variable x has a skewed normal forecast distribution
and five samples are drawn from this distribution (illustrated
in Fig. 4a). A signed square root function (h (x))

h (x)≡ sign(x)
√
|x|, (16)

is used as the observation operator, and let y denote observa-
tion values. In this bivariate example, 10 000 virtual members
will be generated by PESE-GC. Note that the true forecast
distribution of x is the previously mentioned skewed normal
distribution (illustrated in Fig. 4a), and the true forecast dis-
tribution of h (x) is estimated by applying h (x) to 1 million
samples of x drawn from the true forecast distribution of x.

3.1 Mechanism 1: PESE-GC improves ensemble-based
representation of the observation likelihood function

For certain EnsDA algorithms that employ ensemble-
based representations of the observation likelihood function,
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Figure 4. Plots of the true forecast PDF (a) and observation like-
lihood functions (b). The five forecast ensemble x values are indi-
cated with red crosses in (a), and the five forecast ensemble y values
are indicated with red crosses in (b). The red curve in (b) indicates
the piecewise-approximated observation likelihood function used
by a rank histogram filter that only uses the five forecast members.
With PESE-GC, the rank histogram filter’s piecewise-approximated
observation likelihood function (blue curve) is improved.

PESE-GC can improve those representations (impact mech-
anism 1). Two EnsDA algorithms will be considered: (1) the
rank histogram filter (RHF; Anderson, 2010) and (2) the
serial stochastic ensemble Kalman filter (serial stochastic
EnKF; Burgers et al., 1998). In the case of the RHF, an
ensemble-based piecewise approximation of the observation
likelihood function is used (illustrated in Fig. 4b). The accu-
racy of that piecewise approximation depends on the ensem-
ble size. When small forecast ensembles are used, that piece-
wise approximation is crude (red curve in Fig. 4b). Since
PESE-GC increases ensemble size, PESE-GC refines that
piecewise representation (blue curve in Fig. 4b). In the ab-
sence of other factors, this refinement will improve the per-
formance of the RHF.

Impact mechanism 1 also manifests for the serial stochas-
tic EnKF. To see that, consider a situation with two obser-
vations and recall that the serial stochastic EnKF uses ran-
dom draws from a univariate Gaussian distribution to repre-
sent the likelihood function (one draw per ensemble mem-
ber). For small ensembles, only a few of those random draws
are made. In other words, there are sampling errors in rep-
resenting the likelihood function. The ensemble statistics re-

Figure 5. Bivariate example demonstrating the impacts of draw-
ing virtual members from an informative fitted marginal (normal
distribution). Panel (a) shows the empirical CDFs of x from the ini-
tial members and virtual members. The estimated relationships be-
tween x and y (obtained by passing the initial members and virtual
members through h(x)) are displayed in panel (b). Finally, panel (c)
shows the empirical CDFs of the initial members and virtual mem-
bers for variable y. The true CDFs and x–y relationships are plotted
in panels (b) and (c) with dotted black lines.

Figure 6. Bivariate example demonstrating the impacts of drawing
virtual members from a misinformed fitted marginal (gamma distri-
bution). The panels here are similar to Fig. 5.

sulting from assimilating the first observation are thus de-
graded by those sampling errors. This degradation then af-
fects the assimilation of the second observation. The assimi-
lation of more than two observations compounds such sam-
pling issues. Since PESE-GC increases the ensemble size,
more draws from the likelihood function are made, thus sup-
pressing sampling errors. As such, in the absence of other
factors, PESE-GC will improve the performance of the serial
stochastic EnKF.

Note that many EnsDA algorithms are immune to im-
pact mechanism 1. The deterministic variants of the EnKF
(Bishop et al., 2001; Whitaker and Hamill, 2002; Anderson,
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2003; Tippett et al., 2003; Sakov and Oke, 2008) and parti-
cle filters (Gordon et al., 1993; Snyder et al., 2008; Poter-
joy, 2016; van Leeuwen et al., 2019) are immune to im-
pact mechanism 1 because no ensemble-based representa-
tion of the likelihood function is used. Also, the stochastic
EnKF that assimilates all observations simultaneously (all-
at-once stochastic EnKF) is immune to this effect – the chain
of events described in the previous paragraph will not occur
for the all-at-once stochastic EnKF. Finally, EnsDA systems
that run ensembles of variational data assimilation methods
(e.g., the ECMWF) are also immune to impact mechanism 1.
This immunity is due to the same reason as the all-at-once
stochastic EnKF.

3.2 Mechanism 2: PESE-GC influences ensemble
statistics

If the user specifies appropriate marginals in PESE-GC’s
stage 1, then PESE-GC will improve the ensemble statistics
used by EnsDA algorithms (mechanism 2). This will be il-
lustrated using the bivariate five-member example discussed
near the start of Sect. 3. Suppose the user knows that the
prior marginal distribution of x is close to Gaussian. Thus,
a Gaussian distribution is fitted to the forecast x values in
PESE-GC’s stage 1 (Sect. 2.2; Fig. 5a). Applying PESE-GC
generates 10 000 virtual members. Figure 5 indicates that the
virtual members’ CDFs and x–y relationship are closer to
the true CDFs and relationship than those of the forecast
members – the virtual members’ curves have visibly shorter
distances from the true curves than the forecast members’
curves. In other words, the virtual members have better en-
semble statistics than the forecast ensemble. This improve-
ment in ensemble statistics is a combination of (1) the user
selecting an appropriate marginal for x and (2) the nonlin-
ear h (x) is evaluated more often (i.e., sampled better) with
a large ensemble. As such, if the user specifies appropriate
marginals in PESE-GC’s stage 1, PESE-GC will likely im-
prove the performance of EnsDA algorithms.

An important caveat is that if the user selects misinformed
marginal distributions, then PESE-GC may degrade the en-
semble statistics used by EnsDA algorithms. To illustrate,
suppose the user fits a shifted gamma distribution (Cheng and
Amin, 1983) to the five forecast x values. This distribution
has three parameters: shape, scale, and location. Since only
five forecast values are used to fit three parameters, the fitted
parameters’ sampling errors are severe. Applying PESE-GC
with this badly estimated shifted gamma distribution results
in virtual ensemble statistics that are worse than those of five
forecast x values (Fig. 6). In such situations, the performance
of EnsDA will likely be degraded by PESE-GC. As such, the
selection of marginals to use with PESE-GC must be done
with care.

In the absence of knowledge about the model variables’
prior marginal distribution, users can use non-parametric
marginal distributions with PESE-GC. Such distributions in-

clude the Gaussian-tailed rank histogram distribution (An-
derson, 2010) and kernel distributions (Anderson and Ander-
son, 1999). Choosing such distributions may not improve the
model-space ensemble statistics. However, because PESE-
GC increases the number of observation operator evalua-
tions, the observation-space ensemble statistics and the en-
semble covariance/copula between observation and model
quantities can be improved.

Note that when linear observations are assimilated, PESE-
GC with Gaussian marginals will not change the perfor-
mance of deterministic variants of the EnKF (Bishop et al.,
2001; Whitaker and Hamill, 2002; Anderson, 2003; Tippett
et al., 2003; Sakov and Oke, 2008). This is because the ex-
panded ensemble will have the same joint-space mean and
covariance as the forecast ensemble.

4 Tests with Lorenz 1996 model

4.1 Setup of experiments

This section explores the impacts of PESE-GC on the per-
formance of EnsDA using perfect model Observing Sys-
tem Simulation Experiments (OSSEs) with the Lorenz 1996
model (L96 model; Lorenz, 2006). The Data Assimilation
Research Testbed (DART; https://github.com/NCAR/DART,
last access: 13 May 2023; National Center for Atmospheric
Research, 2024; Anderson et al., 2009) is used in this ex-
ploration, and PESE-GC has been implemented into the ver-
sion of DART archived at https://doi.org/10.5281/zenodo.
10126956 (Chan, 2023).

The L96 model uses 40 variables (i.e., 40 grid points in
a ring), a forcing parameter value of 8 (i.e., F = 8), and a
time step of 0.05 L96 time units. The L96 time unit is hence-
forth referred to as τ . All results in this paper are displayed
and discussed in terms of τ . Forward time integration of
the model is done via the Runge–Kutta fourth-order integra-
tion scheme. Every OSSE runs for 5500 cycles. Initial nature
run states and the initial ensemble members are drawn from
L96’s climatology.

In all experiments, there are 40 observations. Their ob-
servation locations are fixed throughout this study. Suppos-
ing that the model grid points have locations 0.025m, m=
1,2, . . .,40, each site location is a random draw from a uni-
form distribution between 0 and 1.

PESE-GC’s impacts are examined using EnsDA experi-
ments that are conducted with four NEs, five cycling inter-
vals, three post-PESE-GC ensemble sizes, three observation
types, four EnsDA algorithms, and with and without PESE-
GC, a total of 4×5×3×3×4×2= 1440 configurations. The
four NEs are 10, 20, 40, and 80, and the five cycling intervals
are 0.05τ , 0.10τ , 0.15τ , 0.30τ , and 0.60τ .

The PESE-GC-expanded ensemble sizes are specified in
terms of factors: 5, 10, and 20 times the forecast ensem-
ble size. For example, if NE = 10, a PESE-GC factor of 10
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means that the expanded ensemble has 100 members (i.e.,
NV = 90 virtual members are created).

Supposing the kth observation site has location `k , the ob-
servation operators for the three observation types are

hIDEN (x;`k)≡ x`k , (17)

hSQRT (x;`k)≡ sgn
(
x`k
)√∣∣x`k ∣∣, (18)

hSQUARE (x;`k)≡ sgn
(
x`k
)(
x`k
)2
, (19)

where x is the L96 model’s 40-element state vector, x`k is
the model variable linearly interpolated to location `k , and
sgn

(
x`k
)

returns the sign of x`k . Observations created using
hIDEN (x;`k), hSQRT (x;`k), and hSQUARE (x;`k) are hence-
forth respectively referred to as IDEN observations, SQRT
observations, and SQUARE observations. Every observation
is created by applying its corresponding observation opera-
tor to a nature run state and then perturbing the output with
a random draw from N

(
0,σ 2). Following Anderson (2020),

the chosen σ 2 for the IDEN, SQRT, and SQUARE observa-
tions are 1.0, 0.25, and 16, respectively. Note that IDEN’s
σ 2 is between 7.4 % and 15 % of the climatological IDEN
error variance, SQRT’s σ 2 is between 10 % and 17 % of the
climatological SQRT error variance, and SQUARE’s σ 2 is
between 2 % and 6 % of the climatological SQUARE error
variance.

The four EnsDA algorithms tested with PESE-GC are

1. the ensemble adjustment Kalman filter (EAKF; Ander-
son, 2003)

2. the serial stochastic EnKF with sorted observation in-
crements (EnKF; Burgers et al., 1998)

3. the rank histogram filter with linear regression (RHF;
Anderson, 2010)

4. the rank histogram filter with probit regression (PR; An-
derson, 2023).

To be clear, the RHF algorithm first employs the rank his-
togram filter to generate observation increments and then
uses linear regression to convert observation increments into
model increments. The PR algorithm is similar to the RHF
algorithm, except that probit regression is used to convert ob-
servation increments into model increments.

For each EnsDA algorithm, only one set of marginals
is used with PESE-GC. When PESE-GC is used with the
EAKF, EnKF, or RHF algorithm, Gaussian marginals are se-
lected for all 40 model variables. PESE-GC with Gaussian
marginals is identical to the CAC2020 algorithm. In other
words, for the EAKF, EnKF, and RHF experiments, the vir-
tual ensemble members follow multivariate Gaussian dis-
tributions. For the PR algorithm, the Gaussian-tailed rank
histogram is selected as the marginal for every one of the
40 model variables. This means the PR experiments’ virtual

ensemble members follow multivariate non-Gaussian distri-
butions. Future work can investigate the impacts of using
PESE-GC with Gaussian-tailed rank histograms (or kernel
density estimates) with the EAKF, EnKF, and RHF.

Each of the 1440 configurations is trialed 36 times. These
trials are enumerated (Trial 1, Trial 2, and so forth). All ex-
periments with the same trial number and NE share the same
nature run and initial forecast ensemble states. For exam-
ple, the following two EnsDA experiments have the same
initial nature run and initial forecast ensemble: (1) Trial 10
using IDEN observations, 20 forecast ensemble members,
0.15τ cycling period, EAKF, and PESE-GC with an expan-
sion factor of 20 and (2) Trial 10 using SQRT observations,
20 forecast ensemble members, 0.60τ cycling period, RHF,
and PESE-GC with an expansion factor of 5. Note that ex-
periments with different trial numbers have different nature
runs and initial forecast ensemble states.

The Gaspari–Cohn fifth-order rational function (Gaspari
and Cohn, 1999) is used to localize EnsDA increments. For
each combination of trial and configuration, 17 localiza-
tion half-radii are tested: 0.075×1.30, 0.075×1.31, 0.075×
1.32, 0.075×1.33, . . ., 0.075×1.314, 0.075×1.315, and in-
finity. To select the optimal localization half-radius for a
given combination of trial and configuration, the root-mean-
square error (RMSE) of the forecast ensemble mean is used.
The RMSE for a particular cycle is

RMSE≡

√√√√ 1
40

40∑
i=1

(
xf
i − x

t
i

)2
, (20)

where xf
i and xti are, respectively, the forecast ensemble mean

state and nature run state at model grid point i. The RM-
SEs of the first 500 out of 5500 EnsDA cycles are discarded.
The localization half-radius that results in the smallest cycle-
averaged RMSE (i.e., averaged from cycles 501 to 5500) is
selected as the optimal localization half-radius. Note that for
the same configuration, the optimal localization half-radius
can vary with the trial number.

The inflation scheme used here is identical to the one used
by Anderson (2023). The adaptive prior inflation algorithm
of Anderson (2009) is used with an inflation lower bound
of 1 (no deflation), an upper bound of 2, a fixed inflation
standard deviation of 0.6, and an inflation damping of 0.9.
While manually tuning a homogeneous inflation factor or a
relaxation-to-posterior-spread (RTPS; Whitaker and Hamill,
2012) relaxation factor may give smaller RMSEs, an adaptive
inflation approach is chosen to reduce the computational cost
of this study. This study already runs 881 280 (1440× 36×
17) combinations of configurations (1440), trials (36), and
localization half-radii (17), and each combination is run for
5500 cycles.
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4.2 Metric to assess PESE-GC’s impact on EnsDA

The impacts of PESE-GC on EnsDA are assessed using the
relative difference between cycle-averaged RMSEs (Eq. 20)
with PESE-GC and cycle-averaged RMSEs without PESE-
GC. The cycle averaging is done from cycles 501 to 5500.
To define this RMSE relative difference, suppose an arbi-
trary configuration of NE, cycling interval, PESE-GC fac-
tor, observation type, and EnsDA algorithm is denoted by
ξ . Let RMSE(ξ , r,True) denote the cycle-averaged RMSE
of the rth trial of configuration ξ with PESE-GC used. Fur-
thermore, let RMSE(ξ , r,False) denote the cycle-averaged
RMSE of the rth trial of configuration ξ without using PESE-
GC. The relative difference between RMSE(ξ , r,True) and
RMSE(ξ , r,False) is defined as

1RMSE(ξ , r)≡
RMSE(ξ , r,True)−RMSE(ξ , r,False)〈

RMSE(ξ ,False)
〉 . (21)

Here, the denominator is the trial-averaged (indicated by
angled brackets) cycle-averaged RMSE of the EnsDA run
with the same ξ as in the numerator but with PESE-GC un-
used. For readability, (ξ , r) is omitted from the rest of this
paper. Most importantly, a negative 1RMSE indicates that
PESE-GC improves the performance of EnsDA, and a posi-
tive value of 1RMSE indicates that PESE-GC degrades the
performance of EnsDA.

Only statistically significant trial-averaged 1RMSE
(henceforth 〈1RMSE〉) is discussed in this paper. A
〈1RMSE〉 is considered statistically significant if its two-
tailed z-test p value is smaller than 1 %. These statistically
significant 〈1RMSE〉 values are plotted in Figs. 7, 8, and 9.

Before proceeding, note that PESE-GC with Gaussian
marginals only negligibly changes the performance of the
EAKF with IDEN observations (Fig. 7a1, b1, and c1). This
negligibility is predicted in Sect. 3.2. Any impact of PESE-
GC on the performance of these experiments is likely due
to rounding errors associated with the use of finite precision
arithmetic.

4.3 Impacts of using 20-fold PESE-GC on EnsDA

This study first examines the 〈1RMSE〉 for a PESE-GC fac-
tor of 20 (panels a1, a2, a3, and a4 in Figs. 7, 8, and 9).
The focus is on identifying common patterns in 〈1RMSE〉
and explaining them through the lens of the two mechanisms
laid out in Sect. 3. The variation in 〈1RMSE〉 with different
PESE-GC factors (remaining panels in Figs. 7, 8, and 9) is
discussed in Sect. 4.4.

The first common 〈1RMSE〉 pattern in the 20-fold PESE-
GC situations is that PESE-GC generally improves EnsDA
performance (i.e., 〈1RMSE〉< 0) whenNE is 10 or 20 (pan-
els a1, a2, a3, and a4 in Figs. 7, 8, and 9). This is because ei-
ther one or both mechanisms described in Sect. 3 are acting
to improve RMSEs. First, for the PR, RHF, and EnKF ex-
periments, the performance improvements are partly (if not

Figure 7. Statistically significant 〈1RMSE〉 values (two-tailed
p < 0.01) for pairs of PESE-GC-using and PESE-GC-omitting ex-
periments that assimilate IDEN observations. The PESE-GC-using
EnsDA experiments in panels (a1), (a2), (a3), and (a4) expanded
their forecast ensembles 20-fold, the PESE-GC-using EnsDA ex-
periments in panels (b1), (b2), (b3), and (b4) expanded their fore-
cast ensembles 10-fold, and the PESE-GC-using EnsDA experi-
ments in panels (c1), (c2), (c3), and (c4) expanded their forecast
ensembles fivefold. Panels (a1), (b1), and (c1) show 〈1RMSE〉 for
EnsDA experiments using the EAKF, panels (a2), (b2), and (c2)
show 〈1RMSE〉 for EnsDA experiments using the EnKF, panels
(a3), (b3), and (c3) show 〈1RMSE〉 for EnsDA experiments using
the RHF, and panels (a4), (b4), and (c4) show 〈1RMSE〉 for EnsDA
experiments using the PR. The acronyms are defined in Sect. 4.1.
Downward triangles indicate 〈1RMSE〉< 0 and upward triangles
indicate 〈1RMSE〉> 0.

entirely) because PESE-GC improves the ensemble-based
representation of the likelihood function (i.e., mechanism
1; Sect. 3.1). For the PR experiments with IDEN observa-
tions, mechanism 1 is likely the sole reason for the improved
performance. Second, the PESE-GC-induced RMSE reduc-
tions in all 10/20 forecast member experiments with either
SQRT or SQUARE observations are partly due to improved
sampling of the observation operator (i.e., mechanism 2 de-
scribed in Sect. 3.2).

The RMSE reductions seen in the 10/20-member EAKF,
EnKF, and RHF experiments are also partly due to improved
ensemble statistics (i.e., mechanism 2; Sect. 3.2). This is be-
cause the L96 model’s forecast statistics tend to be close to
Gaussian (e.g., Chan et al., 2020). Applying PESE-GC with
Gaussian marginals thus improves the model variables’ prior
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Figure 8. Similar to Fig. 7, except that SQRT observations are as-
similated.

Figure 9. Similar to Fig. 7, except that SQUARE observations are
assimilated.

ensemble statistics, therefore improving the performance of
the EAKF, EnKF, and RHF experiments.

The second common pattern in the 20-fold PESE-GC ex-
periments is that with increasing NE, PESE-GC’s RMSE im-
pacts can go from improving (〈1RMSE〉< 0) to degrading

(〈1RMSE〉> 0). This pattern is likely related to both mech-
anisms in Sect. 3. First, for the EnKF, RHF, and PR, the
ensemble-based representation of the observation likelihood
function improves with increasing NE. This improvement
implies there is less room for PESE-GC to improve that rep-
resentation. As such, mechanism 1 weakens with increasing
NE, thus reducing PESE-GC-induced EnsDA performance
gains for the EnKF, RHF, and PR EnsDA algorithms.

For the EAKF, EnKF, and RHF experiments, impact
mechanism 2 also contributes to the worsening of PESE-
GC’s RMSE impacts with increasingNE. In the act of choos-
ing Gaussian marginal distributions for PESE-GC, the user
implicitly assumes that the true forecast PDF is Gaussian.
With increasing NE, imperfections in this Gaussian assump-
tion become increasingly evident. The impacts of PESE-GC
on the observation space prior statistics can thus go from im-
proving to degrading with increasing NE. This change likely
contributes to the worsening of PESE-GC’s RMSE impacts
with increasing NE.

A third common pattern is that with longer cycles, the
PESE-GC’s RMSE impacts on the EAKF, EnKF, and RHF
degrade (i.e., 〈1RMSE〉 goes from either negative to zero,
zero to positive, or negative to positive). This pattern is likely
due to increasing non-Gaussianity in the forecast ensem-
ble’s statistics with longer cycles. The choice to use Gaussian
marginals in these experiments’ PESE-GC thus becomes in-
creasingly inappropriate, meaning that impact mechanism 2
increasingly degrades the performance of EnsDA.

The fourth common pattern is that in the PR experiments,
for NE ≥ 20, the 20-fold PESE-GC’s impact improves with
longer cycling interval (Figs. 7a4, 8a4, and 9a4). A plausible
explanation relates to PR’s usage of a piecewise approxima-
tion to the observation likelihood function (henceforth the
piecewise approximation). This approximation is more accu-
rate when more ensemble members sample the regions of the
observation likelihood function where that function varies
strongly. However, with increasing forecast ensemble vari-
ance, those regions tend to be sampled less by forecast en-
semble members, thus degrading the piecewise approxima-
tion. Since longer cycling intervals increase forecast ensem-
ble variance, longer cycling intervals thus increase the room
for PESE-GC to improve the piecewise approximation. Fu-
ture work can test this explanation.

Note that the chain of events discussed in the previous
paragraph likely occurs for the RHF experiments as well.
Since the RHF experiments do not exhibit the fourth common
pattern, it is likely that the inappropriateness of the Gaussian
marginals used with PESE-GC overwhelms improvements
introduced by refining the piecewise approximation.

4.4 Variations in PESE-GC’s impacts with different
amounts of ensemble expansion

This study now examines common patterns in how PESE-
GC’s impacts vary with PESE-GC expansion factors. The
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first common pattern is that PESE-GC’s impacts on the PR
experiments tend to weaken with smaller PESE-GC factors
(panels a4, b4, and c4 in Figs. 7, 8, and 9). This pattern
is likely caused by increasing sampling errors in the virtual
members’ statistics with fewer virtual members (i.e., smaller
PESE-GC factors).

The second common pattern is that, for NE ≥ 40, smaller
PESE-GC factors tend to result in milder RMSE degrada-
tions introduced by PESE-GC in the EAKF, EnKF, and RHF
experiments. Since these RMSE degradations are likely due
to the misinformed selection of Gaussian marginals with
PESE-GC (see Sect. 4.3), reducing the number of virtual
members reduces the amount of misinformation introduced
by PESE-GC into the forecast statistics. These less misin-
formed forecast statistics explain the second common pat-
tern.

An interesting third common pattern is also visible in
the EAKF, EnKF, and RHF experiments: there are instances
where reducing PESE-GC factors (1) turns insignificant
RMSE impacts into RMSE improvements (e.g., the lower-
left corner of Fig. 8a1 and c1) or (2) turns RMSE degrada-
tions into RMSE improvements (e.g., upper-right corner of
Fig. 7a3 and c3). To explain this third pattern, notice that
these instances are associated with short cycling intervals
(0.05–0.10τ ), and shorter cycling intervals are associated
with increasingly Gaussian forecast PDFs. Based on these
associations, a plausible explanation is that the true forecast
statistics only mildly deviate from Gaussian, but the forecast
ensemble statistics are often far from Gaussian. Introducing
some Gaussian virtual members thus improves the ensem-
ble statistics. However, if too many Gaussian virtual mem-
bers are introduced, the expanded ensemble statistics become
too close to Gaussian. This “Goldilocks” explanation can be
tested in future work.

Most importantly, even with a mere fivefold PESE-GC,
PESE-GC improves the performance of EnsDA in three
types of situations. First, all EnsDA experiments involv-
ing small forecast ensemble sizes (10 members) are im-
proved by PESE-GC. Second, situations where using Gaus-
sian marginals with PESE-GC improves ensemble statistics
are also improved by PESE-GC. This second type of situa-
tion occurs for the EAKF, EnKF, and RHF experiments that
have either (1) 20–40 ensemble members and/or (2) cycling
intervals that are 0.30τ or less. Third, PESE-GC improves the
PR experiments for cycling intervals that are 0.30τ or 0.60τ .
This improvement is plausibly because with longer cycling
intervals, PESE-GC better improves the piecewise observa-
tion likelihood approximation used by the PR EnsDA algo-
rithm (explained in Sect. 4.3). These PESE-GC-introduced
improvements are particularly encouraging because a geo-
physical EnsDA system is more likely able to afford using
5-fold PESE-GC over 20-fold PESE-GC.

5 Discussion

5.1 PESE-GC assumes Gaussian copulas

The results presented in the previous section are encourag-
ing. However, a caveat about PESE-GC needs discussion:
PESE-GC assumes that the forecast distribution is a multi-
variate Gaussian distribution in probit space (i.e., Gaussian
copula). If that assumption is violated (henceforth Gaussian
copula assumption), the virtual members will possess statis-
tical artifacts.

Figure 10a illustrates PESE-GC’s ability to generate non-
Gaussian virtual members for a situation where the Gaussian
copula assumption holds. The true forecast multivariate PDF
(Fig. 10a1) is created by applying two inverse PPI transforms
on a bivariate Gaussian PDF. The two-dimension mean vec-
torµ and the 2×2 covariance matrix6 of the bivariate Gaus-
sian PDF are

µ≡
[
0 0

]>
, 6 ≡

[
1 0.7

0.7 1

]
. (22)

The first inverse PPI transform is applied on the first variable
(x1) and the PDF it uses (p (x1)) is

p (x1)≡
1
2
G (x1;−1,2)+

1
2
G (x1;3,1) , (23)

where G (x1;−1,2) represents the Gaussian PDF with a
scalar mean of −1 and standard deviation of 2 and likewise
for G (x1;3,1). The second inverse PPI transform is applied
on the second variable (x2) and the PDF it uses (p (x2)) is

p (x2)≡
1
2
G (x2;2,1)+

1
2
G (x2;−2,2) , (24)

where G (x2;2,1) and G (x2;−2,2) are defined similarly to
G (x1;−1,2).

Since the forecast PDF in Fig. 10a1 has, by construction,
a Gaussian copula (Fig. 10a3), PESE-GC can produce vir-
tual members that approximately follow the forecast PDF.
To demonstrate, 100 forecast members were drawn from
the forecast PDF, and 1 million virtual members were con-
structed using PESE-GC. The two marginal PDFs that are
used in steps 1, 2, and 4 of PESE-GC are univariate bi-
Gaussian PDFs (fitted via a maximum likelihood estimation
in step 1). The histogram-estimated PDFs of the virtual mem-
bers (Fig. 10a2) and virtual probits (Fig. 10a4) are similar
to the true forecast PDF (Fig. 10a1) and the true forecast’s
probit-space PDF (Fig. 10a3).

An example where the Gaussian copula assumption is vio-
lated is shown in Fig. 10b. Here, the forecast PDF (Fig. 10b1)
is the following bivariate bi-Gaussian PDF

p (x)=
1
2
G (x; µ1,61)+

1
2
G (x; µ2,62) , (25)
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Figure 10. Two bivariate demonstrations of PESE-GC. In each demonstration, 100 initial members are drawn from a true bivariate PDF (a1,
b1), bi-Gaussian PDFs are fitted to each variable, and PESE-GC creates 1 million virtual members. Panels (a1) and (b1) show the PDFs that
the initial members are drawn from (i.e., the true bivariate PDFs), panels (a2) and (b2) show bivariate empirical PDFs estimated by the virtual
members, panels (a3) and (b3) show the true bivariate PDF in probit space, and panels (a4) and (b4) show the virtual members’ bivariate
empirical PDFs in probit space. The two true bivariate are a trimodal PDF with an underlying Gaussian copula (a1) and a bi-Gaussian PDF
(d1). Note that the bi-Gaussian PDF’s copula is not a Gaussian copula (b3). The two true PDFs are described in Sect. 5.1.

where

x ≡

[
x1
x2

]
, µ1 ≡

[
−1
2

]
, µ2 ≡

[
3
−2

]
, (26)

61 ≡

[
2 −0.5
−0.5 0.5

]
, 62 ≡

[
0.5 −0.5
−0.5 2

]
. (27)

Applying PPI transforms on this bivariate bi-Gaussian
forecast PDF reveals that the bi-Gaussian PDF violates the
Gaussian copula assumption (Fig. 10b3). When PESE-GC
is applied to generate 1 million virtual members from 100
forecast members, the virtual members’ probit space bivari-
ate PDF (Fig. 10b4) differs from the forecast PDF in probit
space (Fig. 10b3). As such, the virtual members’ bivariate
PDF (Fig. 10b2) deviates from the true bivariate bi-Gaussian
forecast PDF (Fig. 10b1; the virtual members have two small
spurious modes).

Note that though the virtual members’ PDF deviates from
the forecast PDF, a strong similarity exists between the two
PDFs. The two dominant modes of the virtual members’ PDF
are very similar to the bi-Gaussian forecast PDF. More gen-
erally, milder violations of the Gaussian copula assumption
will likely lead to milder spurious statistical features in the
virtual members.

More importantly, PESE-GC’s Gaussian copula assump-
tion may not be problematic for geophysical EnsDA. Due
to the high dimensionality of geophysical models and small

forecast ensemble sizes, it is difficult to identify the family
of the multivariate forecast distributions in probit space. In
other words, the forecast ensemble’s statistics in probit space
are likely indistinguishable from a multivariate Gaussian.
This indistinguishability permits assuming Gaussian copu-
las. Future work can investigate this possibility.

5.2 Impacts of PESE-GC on the computational cost of
EnsDA

It is also important to discuss the impacts of PESE-GC on
the EnsDA process (i.e., the forecast step and analysis step).
Since the virtual members are deleted before running fore-
cast models (Fig. 1), PESE-GC does not change the forecast
step’s computational cost. However, PESE-GC will increase
the computational cost of the analysis step because (1) the
number of observation operator calls scales linearly with the
ensemble size and (2) the EnsDA filter algorithm’s (e.g., the
EAKF algorithm’s) computational complexity scales with
the ensemble size. Supposing the computational cost of the
EnsDA filter algorithm scales linearly with ensemble size,
then the computational cost of the EnsDA analysis step scales
linearly with the number of ensemble members created by
PESE-GC.

However, the increase in the computational cost associ-
ated with PESE-GC is likely far more affordable than run-
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ning a larger forecast ensemble. This is because the compu-
tational cost of the forecast step often accounts for> 80% of
the overall computational cost of the EnsDA process and the
analysis step accounts for the remaining < 20%. Consider
the situation where PESE-GC quintuples the ensemble size.
The overall computational cost of the EnsDA process will
only increase by < 80%. In contrast, if the forecast ensem-
ble size is quintupled, then the overall computational cost of
the EnsDA process increases by 400%. As such, PESE-GC
is an alluring alternative to increasing the forecast ensemble
size.

6 Summary and future work

In this study, an efficient and embarrassingly parallel algo-
rithm to increase ensemble sizes, PESE-GC, is formulated.
PESE-GC generalizes the efficient and embarrassingly par-
allel Gaussian resampling algorithm of Chan et al. (2020)
to handle non-Gaussian forecast distributions. This handling
of non-Gaussian forecast distributions means PESE-GC is
highly flexible. Furthermore, PESE-GC provides an avenue
for users to use their knowledge of the forecast statistics to
improve EnsDA – users can choose to draw virtual mem-
bers using marginal distribution families (e.g., Gaussian and
gamma distribution families) that they think are good ap-
proximations of the true forecast marginal distributions. If
that knowledge is unavailable, users can choose to use non-
parametric marginal distributions (e.g., Gaussian-tailed rank
histogram distributions).

Three mechanisms are then identified for PESE-GC to in-
fluence the performance of EnsDA. First, for EnsDA meth-
ods like the serial stochastic EnKF and the rank histogram
filter, PESE-GC improves the representation of the observa-
tion likelihood function. Second, by expanding the number of
ensemble members, PESE-GC increases the sampling of the
observation operator. This increased sampling improves the
forecast observations’ PDF. Finally, when users use PESE-
GC with informative marginal distribution families, the fore-
cast observations’ statistics are improved.

The impacts of PESE-GC on the performance of EnsDA
are explored using the L96 model, a variety of observation
systems and a variety of EnsDA algorithms. Results indi-
cate that PESE-GC generally improves the performance of
EnsDA when (1) the forecast ensemble size is small (10
members), (2) the marginal distribution families used with
PESE-GC are informative, and/or (3) PESE-GC improves the
representation of the observation likelihood function (the PR
experiments in Sect. 4.3 and 4.4). It is particularly encourag-
ing that many of these improvements are retained even with a
modest amount of ensemble expansion (fivefold expansion).

There are two general areas for future work with PESE-
GC. The first area is to move PESE-GC towards geophys-
ical models (EnsDA or forecast postprocessing). To do so,
PESE-GC needs to first be tested with ensemble members

created by geophysical models (e.g., Weather Research and
Forecasting model; Skamarock et al., 2008). It will be partic-
ularly interesting to see if the virtual members have realistic
meteorological structures (e.g., convective clouds with sup-
porting circulations). Then, PESE-GC can be tested using a
geophysical EnsDA and/or postprocessing system. If PESE-
GC does improve the performance of geophysical EnsDA/-
postprocessing, a comparison between PESE-GC and other
ensemble expansion methods is warranted.

Another general area for future work is to develop the
PESE-GC algorithm further. First, given the importance of
localization in practical EnsDA, future work can and should
explore inserting localization into PESE-GC. Second, the
validity of PESE-GC’s Gaussian copula assumption can be
assessed in the context of geophysical modeling and fore-
casting. If the Gaussian copula assumption is inappropriate,
then non-parametric methods to generate virtual probits can
be explored. Third, methods to detect the usage of misin-
formed parametric marginal distribution families deserve ex-
ploration. One possible detection method is to employ hy-
pothesis testing on the marginal distributions. For example,
if Gaussian distributions are selected for PESE-GC, then the
Shapiro–Wilk test can be applied on the forecast ensem-
ble to determine if the selection is misinformed (e.g., Kuro-
sawa and Poterjoy, 2023). Finally, the use of non-Gaussian
marginals with PESE-GC may alter ensemble covariances
between model variables. This possibility deserves future in-
vestigation.

The computational cost of running geophysical models
will continue to increase in the coming years (higher spatial
resolution, shorter time steps, more complex parameteriza-
tion schemes, etc.). Geophysical EnsDA groups will continue
to grapple with the challenge of balancing the computational
costs of increasing the number of forecast ensemble mem-
bers and the computational costs of using more realistic geo-
physical models. If ensemble expansion methods can provide
much of the benefits of a larger forecast ensemble size at a
fraction of the cost, these methods will enable EnsDA groups
to employ more realistic geophysical models.

Code availability. The codes used in this study is publicly avail-
able at https://doi.org/10.5281/zenodo.10126956 (Chan, 2023).
These codes include (1) the Python scripts used to generate the
conceptual illustrations, (2) an implementation of PESE-GC into
DART, and (3) the Python and Bash scripts used to run and evaluate
this study’s Lorenz 1996 experiments.

Data availability. Due to the immense number of experiments
performed in this study (881 280 experiments), only the per-
formance metrics of each experiment are archived. These per-
formance metrics are consolidated into text files that are avail-
able at https://doi.org/10.5281/zenodo.10126956 (Chan, 2023)
in the lorenz96_expts/performance_logs/BestTuning directory. In-
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structions on how to replicate the simulation experiments are also
found at https://doi.org/10.5281/zenodo.10126956.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/npg-31-287-2024-supplement.
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