Articles | Volume 30, issue 1
https://doi.org/10.5194/npg-30-37-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-30-37-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Elia Gorokhovsky
CORRESPONDING AUTHOR
National Center for Atmospheric Research, Boulder, CO, USA
currently at: California Institute of Technology, Pasadena, CA,
USA
Jeffrey L. Anderson
National Center for Atmospheric Research, Boulder, CO, USA
Related authors
No articles found.
Carla Cardinali, Giovanni Conti, Marcelo Guatura, Sami Saarinen, Luis Gustavo Gonçalves De Gonçalves, Jeffrey Anderson, and Kevin Raeder
EGUsphere, https://doi.org/10.5194/egusphere-2025-4294, https://doi.org/10.5194/egusphere-2025-4294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Scientists have developed research systems to test new ideas in data assimilation, but these often lack the efficiency and robustness needed for operational use. We addressed this gap with key innovations: a flexible observation database, first guess at the appropriate time, and modular, parallelised software enabling the assimilation of millions of observations.
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024, https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary
Short summary
Statistically combining models and observations with data assimilation (DA) can improve sea ice forecasts but must address several challenges, including irregularity in ice thickness and coverage over the ocean. Using a sea ice column model, we show that novel, bounds-aware DA methods outperform traditional methods for sea ice. Additionally, thickness observations at sub-grid scales improve modeled ice estimates of both thick and thin ice, a finding relevant for forecasting applications.
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024, https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Short summary
Accurate sea ice conditions are crucial for quality sea ice projections, which have been connected to rapid warming over the Arctic. Knowing which observations to assimilate into models will help produce more accurate sea ice conditions. We found that not assimilating sea ice concentration led to more accurate sea ice states. The methods typically used to assimilate observations in our models apply assumptions to variables that are not well suited for sea ice because they are bounded variables.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021, https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary
Short summary
Observations of winds in the planetary boundary layer remain sparse, making it challenging to simulate and predict the atmospheric conditions that are most important for describing and predicting urban air quality. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of wind fields in the boundary layer.
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021, https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Andrew Tangborn, Belay Demoz, Brian J. Carroll, Joseph Santanello, and Jeffrey L. Anderson
Atmos. Meas. Tech., 14, 1099–1110, https://doi.org/10.5194/amt-14-1099-2021, https://doi.org/10.5194/amt-14-1099-2021, 2021
Short summary
Short summary
Accurate prediction of the planetary boundary layer is essential to both numerical weather prediction (NWP) and pollution forecasting. This paper presents a methodology to combine these measurements with the models through a statistical data assimilation approach that calculates the correlation between the PBLH and variables like temperature and moisture in the model. The model estimates of these variables can be improved via this method, and this will enable increased forecast accuracy.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Cited articles
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K.: A review of global ocean temperature observations:
Implications for ocean heat content estimates and climate change, Rev.
Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022, 2013.
Amrhein, D. E.: How large are temporal representativeness errors in paleoclimatology?, Clim. Past, 16, 325–340, https://doi.org/10.5194/cp-16-325-2020, 2020.
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation,
Mon. Weather Rev., 129, 2884–2903,
https://doi.org/10.1175/1520-0493(2001)129<2884:Aeakff>2.0.Co;2, 2001.
Anderson, J. L.: A local least squares framework for ensemble filtering,
Mon. Weather Rev., 131, 634–642,
https://doi.org/10.1175/1520-0493(2003)131<0634:Allsff>2.0.Co;2, 2003.
Anderson, J. L.: Data and code used to generate figures in Gorokhovsky and Anderson, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7576692, 2023.
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts,
Mon. Weather Rev., 127, 2741–2758,
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999.
Bartky, I. R.: The adoption of standard time, Technol. Cult., 30,
25–56, https://doi.org/10.2307/3105430, 1989.
Berry, T. and Harlim, J.: Correcting biased observation model error in data
assimilation, Mon. Weather Rev., 145, 2833–2853,
https://doi.org/10.1175/MWR-D-16-0428.1, 2017.
Burgers, G., Van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the
ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724,
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998.
Chartier A., Matsuo, T., Anderson, J., Collins, N., Hoar, T., Lu, G.,
Mitchell, C., Coster, A., Paxton, L., and Bust, G.: Ionospheric data
assimilation and forecasting during storms, J. Geophys. Res.-Space
Phys., 121, 764–768, https://doi.org/10.1002/2014JA020799, 2014.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M.,
Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff,
S. D., and Worley, S. J.: The twentieth century reanalysis project, Q. J.
Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Dee, D. P. and Uppala, S.: Variational bias correction of satellite
radiance data in the ERA-Interim reanalysis, Q. J. Roy.
Meteor. Soc., 135, 1830–1841, https://doi.org/10.1002/qj.493, 2009.
Desroziers, G. L., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of
observation, background and analysis-error statistics in observation space,
Q. J. Roy. Meteor. Soc., 131, 3385–3396,
https://doi.org/10.1256/qj.05.108, 2005.
Dirren, S. and Hakim, G. J.: Toward the assimilation of time-averaged
observations, Geophys. Res. Lett., 32, L04804, https://doi.org/10.1029/2004GL021444, 2005.
Gaspari, G., and Cohn, S. E.: Construction of correlation functions in two
and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757,
https://doi.org/10.1002/qj.49712555417, 1999.
Giese, B. S., Seidel, H. F., Compo, G. P., and Sardeshmukh, P. D.: An ensemble
of ocean reanalyses for 1815–2013 with sparse observational input, J.
Geophys. Res.-Oceans, 121, 6891–6910, https://doi.org/10.1002/2016JC012079,
2016.
Gwirtz, K., Morzfeld, M., Kuang, W., and Tangborn, A.: A testbed for
geomagnetic data assimilation, Geophys. J. Int., 227,
2180–2203, https://doi.org/10.1093/gji/ggab327, 2021.
Haimberger, L.: Homogenization of radiosonde temperature time series using
innovation statistics, J. Climate, 20, 1377–1403,
https://doi.org/10.1175/JCLI4050.1, 2007.
Hamilton, F., Berry, T., and Sauer, T.: Correcting observation model error
in data assimilation, Chaos, 29, 053102, https://doi.org/10.1063/1.5087151,
2019.
Jones, T. A., Otkin, J. A., Stensrud, D. J., and Knopfmeier, K.: Forecast
evaluation of an observing system simulation experiment assimilating both
radar and satellite data, Mon. Weather Rev., 142, 107–124,
https://doi.org/10.1175/MWR-D-13-00151.1, 2014.
Laroche, S. and Sarrazin, R.: Impact of radiosonde balloon drift on
numerical weather prediction and verification, Weather Forecast., 28,
772–782, https://doi.org/10.1175/WAF-D-12-00114.1, 2013.
Lorenz, E. N. and Emanuel, K. A.: Optimal sites for supplementary weather
observations: Simulation with a small model, J. Atmos. Sci., 55, 399–414,
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2, 1998.
Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M.,
and Wu, R.: Multiconstituent data assimilation with WRF-Chem/DART:
Potential for adjusting anthropogenic emissions and improving air quality
forecasts over eastern China, J. Geophys. Res.-Atmos., 124, 7393–7412. https://doi.org/10.1029/2019JD030421,
2019.
Pires, C. A. L. and Perdigão, R. A. P.: Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance, Nonlin. Processes Geophys., 22, 87–108, https://doi.org/10.5194/npg-22-87-2015, 2015.
Slivinski L. C., Compo, G.P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J., Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman, J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le Blancq, F., Lee, T., Lorrey, A., Luterbacher, J., Maugeri, M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C., Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński, P.: Towards a more reliable historical reanalysis:
Improvements for version 3 of the Twentieth Century Reanalysis system,
Q. J. Roy. Meteor. Soc., 145, 28760–2908,
https://doi.org/10.1002/qj.3598, 2019.
Satterfield, E., Hodyss, D., Kuhl, D. D., and Bishop, C. H.: Investigating
the use of ensemble variance to predict observation error of representation,
Mon. Weather Rev., 145, 653–667, https://doi.org/10.1175/MWR-D-16-0299.1,
2017.
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker,
J. S.: Ensemble square root filters, Mon. Weather Rev., 131, 1485–1490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2, 2003.
Toride, K., Neluwala, P., Kim, H., and Yoshimura, K.: Feasibility study of
the reconstruction of historical weather with data assimilation, Mon.
Weather Rev., 145, 3563–3580, https://doi.org/10.1175/MWR-D-16-0288.1, 2017.
Van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: An extremely
efficient particle filter, Q. J. Roy. Meteor. Soc., 136,
1991–1999, https://doi.org/10.1002/qj.699, 2010.
Zhang, Y., Bitz, C. M., Anderson, J. L., Collins, N., Hendricks, J., Hoar,
T., Raeder, K., and Massonnet, F.: Insights on sea ice data assimilation
from perfect model observing system simulation experiments, J. Climate, 31,
5911–5926, https://doi.org/10.1175/JCLI-D-17-0904.1, 2018.
Zupanski, D. and Zupanski, M.: Model error estimation employing an ensemble
data assimilation approach, Mon. Weather Rev., 134, 1337–1354,
https://doi.org/10.1175/MWR3125.1, 2006.
Short summary
Older observations of the Earth system sometimes lack information about the time they were taken, posing problems for analyses of past climate. To begin to ameliorate this problem, we propose new methods of varying complexity, including methods to estimate the distribution of the offsets between true and reported observation times. The most successful method accounts for the nonlinearity in the system, but even the less expensive ones can improve data assimilation in the presence of time error.
Older observations of the Earth system sometimes lack information about the time they were...