Articles | Volume 30, issue 1
https://doi.org/10.5194/npg-30-37-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-30-37-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Elia Gorokhovsky
CORRESPONDING AUTHOR
National Center for Atmospheric Research, Boulder, CO, USA
currently at: California Institute of Technology, Pasadena, CA,
USA
Jeffrey L. Anderson
National Center for Atmospheric Research, Boulder, CO, USA
Related authors
No articles found.
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024, https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary
Short summary
Statistically combining models and observations with data assimilation (DA) can improve sea ice forecasts but must address several challenges, including irregularity in ice thickness and coverage over the ocean. Using a sea ice column model, we show that novel, bounds-aware DA methods outperform traditional methods for sea ice. Additionally, thickness observations at sub-grid scales improve modeled ice estimates of both thick and thin ice, a finding relevant for forecasting applications.
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024, https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Short summary
Accurate sea ice conditions are crucial for quality sea ice projections, which have been connected to rapid warming over the Arctic. Knowing which observations to assimilate into models will help produce more accurate sea ice conditions. We found that not assimilating sea ice concentration led to more accurate sea ice states. The methods typically used to assimilate observations in our models apply assumptions to variables that are not well suited for sea ice because they are bounded variables.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021, https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary
Short summary
Observations of winds in the planetary boundary layer remain sparse, making it challenging to simulate and predict the atmospheric conditions that are most important for describing and predicting urban air quality. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of wind fields in the boundary layer.
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021, https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Andrew Tangborn, Belay Demoz, Brian J. Carroll, Joseph Santanello, and Jeffrey L. Anderson
Atmos. Meas. Tech., 14, 1099–1110, https://doi.org/10.5194/amt-14-1099-2021, https://doi.org/10.5194/amt-14-1099-2021, 2021
Short summary
Short summary
Accurate prediction of the planetary boundary layer is essential to both numerical weather prediction (NWP) and pollution forecasting. This paper presents a methodology to combine these measurements with the models through a statistical data assimilation approach that calculates the correlation between the PBLH and variables like temperature and moisture in the model. The model estimates of these variables can be improved via this method, and this will enable increased forecast accuracy.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Arthur P. Mizzi, David P. Edwards, and Jeffrey L. Anderson
Geosci. Model Dev., 11, 3727–3745, https://doi.org/10.5194/gmd-11-3727-2018, https://doi.org/10.5194/gmd-11-3727-2018, 2018
Short summary
Short summary
Accurate air quality forecasts are critical to protecting human health and the environment. This paper shows how ensemble assimilation of MOPITT CO
compact phase space retrieval(CPSR) profiles in WRF-Chem/DART provides significant improvements in the air quality forecasts over the CONUS when compared to independent remote (IASI CO retrieval profiles) and in situ (IAGOS/MOZAIC) observations. It also extends the CPSR algorithm to assimilation of truncated retrieval profiles.
Ali Aydoğdu, Timothy J. Hoar, Tomislava Vukicevic, Jeffrey L. Anderson, Nadia Pinardi, Alicia Karspeck, Jonathan Hendricks, Nancy Collins, Francesca Macchia, and Emin Özsoy
Nonlin. Processes Geophys., 25, 537–551, https://doi.org/10.5194/npg-25-537-2018, https://doi.org/10.5194/npg-25-537-2018, 2018
Short summary
Short summary
This study presents, to our knowledge, the first data assimilation experiments in the Sea of Marmara. We propose a FerryBox network for monitoring the state of the sea and show that assimilation of the temperature and salinity improves the forecasts in the basin. The flow of the Bosphorus helps to propagate the error reduction. The study can be taken as a step towards a marine forecasting system in the Sea of Marmara that will help to improve the forecasts in the adjacent Black and Aegean seas.
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Y. Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 17, 7067–7081, https://doi.org/10.5194/acp-17-7067-2017, https://doi.org/10.5194/acp-17-7067-2017, 2017
Short summary
Short summary
We describe a chemical ensemble data assimilation system with high spatial and temporal resolution that simultaneously adjusts meteorological and chemical variables and NOx emissions. We investigate the sensitivity of emission inversions to the accuracy and uncertainty of the wind analyses and the emission update scheme. The results provide insight into optimal uses of the observations from future geostationary satellite missions that will observe atmospheric composition.
Juli I. Rubin, Jeffrey S. Reid, James A. Hansen, Jeffrey L. Anderson, Nancy Collins, Timothy J. Hoar, Timothy Hogan, Peng Lynch, Justin McLay, Carolyn A. Reynolds, Walter R. Sessions, Douglas L. Westphal, and Jianglong Zhang
Atmos. Chem. Phys., 16, 3927–3951, https://doi.org/10.5194/acp-16-3927-2016, https://doi.org/10.5194/acp-16-3927-2016, 2016
Short summary
Short summary
This work tests the use of an ensemble prediction system for aerosol forecasting, including an ensemble adjustment Kalman filter for MODIS AOT assimilation. Key findings include (1) meteorology and source-perturbed ensembles are needed to capture long-range transport and near-source aerosol events, (2) adaptive covariance inflation is recommended for assimilating spatially heterogeneous observations and (3) the ensemble system captures sharp gradients relative to a deterministic/variational system.
Arthur P. Mizzi, Avelino F. Arellano Jr., David P. Edwards, Jeffrey L. Anderson, and Gabriele G. Pfister
Geosci. Model Dev., 9, 965–978, https://doi.org/10.5194/gmd-9-965-2016, https://doi.org/10.5194/gmd-9-965-2016, 2016
Short summary
Short summary
This paper introduces (i) WRF-Chem/DART – a state-of-the-art chemical transport/data assimilation system, and (ii) compact phase space retrievals (CPSRs). WRF-Chem/DART is NCAR's regional chemical weather forecasting prototype. Such systems require assimilation of chemical composition observations, such as trace gas retrievals. Retrievals are expensive to assimilate. CPSRs reduce those assimilation costs (~ 35 % for MOPITT CO) without loss in forecast skill by removing redundant information.
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014, https://doi.org/10.5194/hess-18-4363-2014, 2014
Related subject area
Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Bridging classical data assimilation and optimal transport: the 3D-Var case
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Evolution of small-scale turbulence at large Richardson numbers
How far can the statistical error estimation problem be closed by collocated data?
Using orthogonal vectors to improve the ensemble space of the ensemble Kalman filter and its effect on data assimilation and forecasting
Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Data-driven reconstruction of partially observed dynamical systems
Applying prior correlations for ensemble-based spatial localization
A stochastic covariance shrinkage approach to particle rejuvenation in the ensemble transform particle filter
Ensemble Riemannian data assimilation: towards large-scale dynamical systems
Inferring the instability of a dynamical system from the skill of data assimilation exercises
Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system
Improving the potential accuracy and usability of EURO-CORDEX estimates of future rainfall climate using frequentist model averaging
Ensemble Riemannian data assimilation over the Wasserstein space
An early warning sign of critical transition in the Antarctic ice sheet – a data-driven tool for a spatiotemporal tipping point
Behavior of the iterative ensemble-based variational method in nonlinear problems
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
A method for predicting the uncompleted climate transition process
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Correcting for model changes in statistical postprocessing – an approach based on response theory
Brief communication: Residence time of energy in the atmosphere
Seasonal statistical–dynamical prediction of the North Atlantic Oscillation by probabilistic post-processing and its evaluation
Application of a local attractor dimension to reduced space strongly coupled data assimilation for chaotic multiscale systems
Order of operation for multi-stage post-processing of ensemble wind forecast trajectories
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024, https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
Short summary
We propose a novel method for the estimation of ocean surface flow properties in terms of its energy and spatial and temporal scales. The method relies on flow observations collected either at a fixed location or along the flow, as would be inferred from the trajectory of freely drifting platforms. The accuracy of the method is quantified in several experimental configurations. We innovatively demonstrate that freely drifting platforms, even in isolation, can be used to capture flow properties.
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024, https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024, https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Short summary
A novel approach, optimal transport data assimilation (OTDA), is introduced to merge DA and OT concepts. By leveraging OT's displacement interpolation in space, it minimises mislocation errors within DA applied to physical fields, such as water vapour, hydrometeors, and chemical species. Its richness and flexibility are showcased through one- and two-dimensional illustrations.
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024, https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary
Short summary
Forecasts have uncertainties. It is thus essential to reduce these uncertainties. Such reduction requires uncertainty quantification, which often means running costly models multiple times. The cost limits the number of model runs and thus the quantification’s accuracy. This study proposes a technique that utilizes users’ knowledge of forecast uncertainties to improve uncertainty quantification. Tests show that this technique improves uncertainty reduction.
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024, https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
Short summary
The nonstationary kinetic model of turbulence is used to describe the evolution and structure of the upper turbulent layer with the parameters taken from in situ observations. As an example, we use a set of data for three cruises made in different areas of the world ocean. With the given profiles of current shear and buoyancy frequency, the theory yields results that satisfactorily agree with the measurements of the turbulent dissipation rate.
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023, https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary
Short summary
Accurate estimation of the error statistics required for data assimilation remains an ongoing challenge, as statistical assumptions are required to solve the estimation problem. This work provides a conceptual view of the statistical error estimation problem in light of the increasing number of available datasets. We found that the total number of required assumptions increases with the number of overlapping datasets, but the relative number of error statistics that can be estimated increases.
Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee
Nonlin. Processes Geophys., 30, 289–297, https://doi.org/10.5194/npg-30-289-2023, https://doi.org/10.5194/npg-30-289-2023, 2023
Short summary
Short summary
In the ensemble Kalman filter, the ensemble space may not fully capture the forecast errors due to the limited ensemble size and systematic model errors, which affect the accuracy of analysis and prediction. This study proposes a new algorithm to use cost-free pseudomembers to expand the ensemble space effectively and improve analysis accuracy during the analysis step, without increasing the ensemble size during forecasting.
Eugenia Kalnay, Travis Sluka, Takuma Yoshida, Cheng Da, and Safa Mote
Nonlin. Processes Geophys., 30, 217–236, https://doi.org/10.5194/npg-30-217-2023, https://doi.org/10.5194/npg-30-217-2023, 2023
Short summary
Short summary
Strongly coupled data assimilation (SCDA) generates coherent integrated Earth system analyses by assimilating the full Earth observation set into all Earth components. We describe SCDA based on the ensemble Kalman filter with a hierarchy of coupled models, from a coupled Lorenz to the Climate Forecast System v2. SCDA with a sufficiently large ensemble can provide more accurate coupled analyses compared to weakly coupled DA. The correlation-cutoff method can compensate for a small ensemble size.
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023, https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
Short summary
This work is a theoretical contribution that provides equations for understanding uncertainty prediction applied in air quality where multiple chemical species can interact. A simplified minimal test bed is introduced that shows the ability of our equations to reproduce the statistics estimated from an ensemble of forecasts. While the latter estimation is the state of the art, solving equations is numerically less costly, depending on the number of chemical species, and motivates this research.
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137, https://doi.org/10.5194/npg-30-129-2023, https://doi.org/10.5194/npg-30-129-2023, 2023
Short summary
Short summary
The goal of this paper is to obtain probabilistic predictions of a partially observed dynamical system without knowing the model equations. It is illustrated using the three-dimensional Lorenz system, where only two components are observed. The proposed data-driven procedure is low-cost, is easy to implement, uses linear and Gaussian assumptions and requires only a small amount of data. It is based on an iterative linear Kalman smoother with a state augmentation.
Chu-Chun Chang and Eugenia Kalnay
Nonlin. Processes Geophys., 29, 317–327, https://doi.org/10.5194/npg-29-317-2022, https://doi.org/10.5194/npg-29-317-2022, 2022
Short summary
Short summary
This study introduces a new approach for enhancing the ensemble data assimilation (DA), a technique that combines observations and forecasts to improve numerical weather predictions. Our method uses the prescribed correlations to suppress spurious errors, improving the accuracy of DA. The experiments on the simplified atmosphere model show that our method has comparable performance to the traditional method but is superior in the early stage and is more computationally efficient.
Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu
Nonlin. Processes Geophys., 29, 241–253, https://doi.org/10.5194/npg-29-241-2022, https://doi.org/10.5194/npg-29-241-2022, 2022
Short summary
Short summary
Numerical weather prediction requires the melding of both computational model and data obtained from sensors such as satellites. We focus on one algorithm to accomplish this. We aim to aid its use by additionally supplying it with data obtained from separate models that describe the average behavior of the computational model at any given time. We show that our approach outperforms the standard approaches to this problem.
Sagar K. Tamang, Ardeshir Ebtehaj, Peter Jan van Leeuwen, Gilad Lerman, and Efi Foufoula-Georgiou
Nonlin. Processes Geophys., 29, 77–92, https://doi.org/10.5194/npg-29-77-2022, https://doi.org/10.5194/npg-29-77-2022, 2022
Short summary
Short summary
The outputs from Earth system models are optimally combined with satellite observations to produce accurate forecasts through a process called data assimilation. Many existing data assimilation methodologies have some assumptions regarding the shape of the probability distributions of model output and observations, which results in forecast inaccuracies. In this paper, we test the effectiveness of a newly proposed methodology that relaxes such assumptions about high-dimensional models.
Yumeng Chen, Alberto Carrassi, and Valerio Lucarini
Nonlin. Processes Geophys., 28, 633–649, https://doi.org/10.5194/npg-28-633-2021, https://doi.org/10.5194/npg-28-633-2021, 2021
Short summary
Short summary
Chaotic dynamical systems are sensitive to the initial conditions, which are crucial for climate forecast. These properties are often used to inform the design of data assimilation (DA), a method used to estimate the exact initial conditions. However, obtaining the instability properties is burdensome for complex problems, both numerically and analytically. Here, we suggest a different viewpoint. We show that the skill of DA can be used to infer the instability properties of a dynamical system.
Zofia Stanley, Ian Grooms, and William Kleiber
Nonlin. Processes Geophys., 28, 565–583, https://doi.org/10.5194/npg-28-565-2021, https://doi.org/10.5194/npg-28-565-2021, 2021
Short summary
Short summary
In weather forecasting, observations are incorporated into a model of the atmosphere through a process called data assimilation. Sometimes observations in one location may impact the weather forecast in another faraway location in undesirable ways. The impact of distant observations on the forecast is mitigated through a process called localization. We propose a new method for localization when a model has multiple length scales, as in a model spanning both the ocean and the atmosphere.
Stephen Jewson, Giuliana Barbato, Paola Mercogliano, Jaroslav Mysiak, and Maximiliano Sassi
Nonlin. Processes Geophys., 28, 329–346, https://doi.org/10.5194/npg-28-329-2021, https://doi.org/10.5194/npg-28-329-2021, 2021
Short summary
Short summary
Climate model simulations are uncertain. In some cases this makes it difficult to know how to use them. Significance testing is often used to deal with this issue but has various shortcomings. We describe two alternative ways to manage uncertainty in climate model simulations that avoid these shortcomings. We test them on simulations of future rainfall over Europe and show they produce more accurate projections than either using unadjusted climate model output or statistical testing.
Sagar K. Tamang, Ardeshir Ebtehaj, Peter J. van Leeuwen, Dongmian Zou, and Gilad Lerman
Nonlin. Processes Geophys., 28, 295–309, https://doi.org/10.5194/npg-28-295-2021, https://doi.org/10.5194/npg-28-295-2021, 2021
Short summary
Short summary
Data assimilation aims to improve hydrologic and weather forecasts by combining available information from Earth system models and observations. The classical approaches to data assimilation usually proceed with some preconceived assumptions about the shape of their probability distributions. As a result, when such assumptions are invalid, the forecast accuracy suffers. In the proposed methodology, we relax such assumptions and demonstrate improved performance.
Abd AlRahman AlMomani and Erik Bollt
Nonlin. Processes Geophys., 28, 153–166, https://doi.org/10.5194/npg-28-153-2021, https://doi.org/10.5194/npg-28-153-2021, 2021
Short summary
Short summary
This paper introduces a tool for data-driven discovery of early warning signs of critical transitions in ice shelves from remote sensing data. Our directed spectral clustering method considers an asymmetric affinity matrix along with the associated directed graph Laplacian. We applied our approach to reprocessing the ice velocity data and remote sensing satellite images of the Larsen C ice shelf.
Shin'ya Nakano
Nonlin. Processes Geophys., 28, 93–109, https://doi.org/10.5194/npg-28-93-2021, https://doi.org/10.5194/npg-28-93-2021, 2021
Short summary
Short summary
The ensemble-based variational method is a method for solving nonlinear data assimilation problems by using an ensemble of multiple simulation results. Although this method is derived based on a linear approximation, highly uncertain problems, in which system nonlinearity is significant, can also be solved by applying this method iteratively. This paper reformulated this iterative algorithm to analyze its behavior in high-dimensional nonlinear problems and discuss the convergence.
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021, https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
Short summary
Numerical weather prediction involves numerically solving the mathematical equations, which describe the geophysical flow, by transforming them so that they can be computed. Through this transformation, it appears that the equations actually solved by the machine are then a modified version of the original equations, introducing an error that contributes to the model error. This work helps to characterize the covariance of the model error that is due to this modification of the equations.
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500, https://doi.org/10.5194/npg-27-489-2020, https://doi.org/10.5194/npg-27-489-2020, 2020
Short summary
Short summary
A system transiting from one stable state to another has to experience a period. Can we predict the end moment (state) if the process has not been completed? This paper presents a method to solve this problem. This method is based on the quantitative relationship among the parameters, which is used to describe the transition process of the abrupt change. By using the historical data, we extract some parameters for predicting the uncompleted climate transition process.
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487, https://doi.org/10.5194/npg-27-473-2020, https://doi.org/10.5194/npg-27-473-2020, 2020
Short summary
Short summary
Forecasts of ensemble systems are statistically aligned to synoptic observations at DWD in order to provide support for warning decision management. Motivation and design consequences for extreme and rare meteorological events are presented. Especially for probabilities of severe wind gusts global logistic parameterisations are developed that generate robust statistical forecasts for extreme events, while local characteristics are preserved.
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020, https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Short summary
Postprocessing schemes used to correct weather forecasts are no longer efficient when the model generating the forecasts changes. An approach based on response theory to take the change into account without having to recompute the parameters based on past forecasts is presented. It is tested on an analytical model and a simple model of atmospheric variability. We show that this approach is effective and discuss its potential application for an operational environment.
Carlos Osácar, Manuel Membrado, and Amalio Fernández-Pacheco
Nonlin. Processes Geophys., 27, 235–237, https://doi.org/10.5194/npg-27-235-2020, https://doi.org/10.5194/npg-27-235-2020, 2020
Short summary
Short summary
We deduce that after a global thermal perturbation, the Earth's
atmosphere would need about a couple of months to come back to equilibrium.
André Düsterhus
Nonlin. Processes Geophys., 27, 121–131, https://doi.org/10.5194/npg-27-121-2020, https://doi.org/10.5194/npg-27-121-2020, 2020
Short summary
Short summary
Seasonal prediction of the of the North Atlantic Oscillation (NAO) has been improved in recent years by improving dynamical models and ensemble predictions. One step therein was the so-called sub-sampling, which combines statistical and dynamical predictions. This study generalises this approach and makes it much more accessible. Furthermore, it presents a new verification approach for such predictions.
Courtney Quinn, Terence J. O'Kane, and Vassili Kitsios
Nonlin. Processes Geophys., 27, 51–74, https://doi.org/10.5194/npg-27-51-2020, https://doi.org/10.5194/npg-27-51-2020, 2020
Short summary
Short summary
This study presents a novel method for reduced-rank data assimilation of multiscale highly nonlinear systems. Time-varying dynamical properties are used to determine the rank and projection of the system onto a reduced subspace. The variable reduced-rank method is shown to succeed over other fixed-rank methods. This work provides implications for performing strongly coupled data assimilation with a limited number of ensemble members on high-dimensional coupled climate models.
Nina Schuhen
Nonlin. Processes Geophys., 27, 35–49, https://doi.org/10.5194/npg-27-35-2020, https://doi.org/10.5194/npg-27-35-2020, 2020
Short summary
Short summary
We present a new way to adaptively improve weather forecasts by incorporating last-minute observation information. The recently measured error, together with a statistical model, gives us an indication of the expected future error of wind speed forecasts, which are then adjusted accordingly. This new technique can be especially beneficial for customers in the wind energy industry, where it is important to have reliable short-term forecasts, as well as providers of extreme weather warnings.
Cited articles
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K.: A review of global ocean temperature observations:
Implications for ocean heat content estimates and climate change, Rev.
Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022, 2013.
Amrhein, D. E.: How large are temporal representativeness errors in paleoclimatology?, Clim. Past, 16, 325–340, https://doi.org/10.5194/cp-16-325-2020, 2020.
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation,
Mon. Weather Rev., 129, 2884–2903,
https://doi.org/10.1175/1520-0493(2001)129<2884:Aeakff>2.0.Co;2, 2001.
Anderson, J. L.: A local least squares framework for ensemble filtering,
Mon. Weather Rev., 131, 634–642,
https://doi.org/10.1175/1520-0493(2003)131<0634:Allsff>2.0.Co;2, 2003.
Anderson, J. L.: Data and code used to generate figures in Gorokhovsky and Anderson, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7576692, 2023.
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts,
Mon. Weather Rev., 127, 2741–2758,
https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999.
Bartky, I. R.: The adoption of standard time, Technol. Cult., 30,
25–56, https://doi.org/10.2307/3105430, 1989.
Berry, T. and Harlim, J.: Correcting biased observation model error in data
assimilation, Mon. Weather Rev., 145, 2833–2853,
https://doi.org/10.1175/MWR-D-16-0428.1, 2017.
Burgers, G., Van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the
ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724,
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998.
Chartier A., Matsuo, T., Anderson, J., Collins, N., Hoar, T., Lu, G.,
Mitchell, C., Coster, A., Paxton, L., and Bust, G.: Ionospheric data
assimilation and forecasting during storms, J. Geophys. Res.-Space
Phys., 121, 764–768, https://doi.org/10.1002/2014JA020799, 2014.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M.,
Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff,
S. D., and Worley, S. J.: The twentieth century reanalysis project, Q. J.
Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Dee, D. P. and Uppala, S.: Variational bias correction of satellite
radiance data in the ERA-Interim reanalysis, Q. J. Roy.
Meteor. Soc., 135, 1830–1841, https://doi.org/10.1002/qj.493, 2009.
Desroziers, G. L., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of
observation, background and analysis-error statistics in observation space,
Q. J. Roy. Meteor. Soc., 131, 3385–3396,
https://doi.org/10.1256/qj.05.108, 2005.
Dirren, S. and Hakim, G. J.: Toward the assimilation of time-averaged
observations, Geophys. Res. Lett., 32, L04804, https://doi.org/10.1029/2004GL021444, 2005.
Gaspari, G., and Cohn, S. E.: Construction of correlation functions in two
and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757,
https://doi.org/10.1002/qj.49712555417, 1999.
Giese, B. S., Seidel, H. F., Compo, G. P., and Sardeshmukh, P. D.: An ensemble
of ocean reanalyses for 1815–2013 with sparse observational input, J.
Geophys. Res.-Oceans, 121, 6891–6910, https://doi.org/10.1002/2016JC012079,
2016.
Gwirtz, K., Morzfeld, M., Kuang, W., and Tangborn, A.: A testbed for
geomagnetic data assimilation, Geophys. J. Int., 227,
2180–2203, https://doi.org/10.1093/gji/ggab327, 2021.
Haimberger, L.: Homogenization of radiosonde temperature time series using
innovation statistics, J. Climate, 20, 1377–1403,
https://doi.org/10.1175/JCLI4050.1, 2007.
Hamilton, F., Berry, T., and Sauer, T.: Correcting observation model error
in data assimilation, Chaos, 29, 053102, https://doi.org/10.1063/1.5087151,
2019.
Jones, T. A., Otkin, J. A., Stensrud, D. J., and Knopfmeier, K.: Forecast
evaluation of an observing system simulation experiment assimilating both
radar and satellite data, Mon. Weather Rev., 142, 107–124,
https://doi.org/10.1175/MWR-D-13-00151.1, 2014.
Laroche, S. and Sarrazin, R.: Impact of radiosonde balloon drift on
numerical weather prediction and verification, Weather Forecast., 28,
772–782, https://doi.org/10.1175/WAF-D-12-00114.1, 2013.
Lorenz, E. N. and Emanuel, K. A.: Optimal sites for supplementary weather
observations: Simulation with a small model, J. Atmos. Sci., 55, 399–414,
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2, 1998.
Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M.,
and Wu, R.: Multiconstituent data assimilation with WRF-Chem/DART:
Potential for adjusting anthropogenic emissions and improving air quality
forecasts over eastern China, J. Geophys. Res.-Atmos., 124, 7393–7412. https://doi.org/10.1029/2019JD030421,
2019.
Pires, C. A. L. and Perdigão, R. A. P.: Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance, Nonlin. Processes Geophys., 22, 87–108, https://doi.org/10.5194/npg-22-87-2015, 2015.
Slivinski L. C., Compo, G.P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J., Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman, J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A., Kubota, H., Le Blancq, F., Lee, T., Lorrey, A., Luterbacher, J., Maugeri, M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C., Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang, X. L., Wilkinson, C., Wood, K., and Wyszyński, P.: Towards a more reliable historical reanalysis:
Improvements for version 3 of the Twentieth Century Reanalysis system,
Q. J. Roy. Meteor. Soc., 145, 28760–2908,
https://doi.org/10.1002/qj.3598, 2019.
Satterfield, E., Hodyss, D., Kuhl, D. D., and Bishop, C. H.: Investigating
the use of ensemble variance to predict observation error of representation,
Mon. Weather Rev., 145, 653–667, https://doi.org/10.1175/MWR-D-16-0299.1,
2017.
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker,
J. S.: Ensemble square root filters, Mon. Weather Rev., 131, 1485–1490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2, 2003.
Toride, K., Neluwala, P., Kim, H., and Yoshimura, K.: Feasibility study of
the reconstruction of historical weather with data assimilation, Mon.
Weather Rev., 145, 3563–3580, https://doi.org/10.1175/MWR-D-16-0288.1, 2017.
Van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: An extremely
efficient particle filter, Q. J. Roy. Meteor. Soc., 136,
1991–1999, https://doi.org/10.1002/qj.699, 2010.
Zhang, Y., Bitz, C. M., Anderson, J. L., Collins, N., Hendricks, J., Hoar,
T., Raeder, K., and Massonnet, F.: Insights on sea ice data assimilation
from perfect model observing system simulation experiments, J. Climate, 31,
5911–5926, https://doi.org/10.1175/JCLI-D-17-0904.1, 2018.
Zupanski, D. and Zupanski, M.: Model error estimation employing an ensemble
data assimilation approach, Mon. Weather Rev., 134, 1337–1354,
https://doi.org/10.1175/MWR3125.1, 2006.
Short summary
Older observations of the Earth system sometimes lack information about the time they were taken, posing problems for analyses of past climate. To begin to ameliorate this problem, we propose new methods of varying complexity, including methods to estimate the distribution of the offsets between true and reported observation times. The most successful method accounts for the nonlinearity in the system, but even the less expensive ones can improve data assimilation in the presence of time error.
Older observations of the Earth system sometimes lack information about the time they were...