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Abstract. Data assimilation (DA), the statistical combination of computer models with measurements, is ap-
plied in a variety of scientific fields involving forecasting of dynamical systems, most prominently in atmospheric
and ocean sciences. The existence of misreported or unknown observation times (time error) poses a unique and
interesting problem for DA. Mapping observations to incorrect times causes bias in the prior state and affects
assimilation. Algorithms that can improve the performance of ensemble Kalman filter DA in the presence of ob-
serving time error are described. Algorithms that can estimate the distribution of time error are also developed.
These algorithms are then combined to produce extensions to ensemble Kalman filters that can both estimate and
correct for observation time errors. A low-order dynamical system is used to evaluate the performance of these
methods for a range of magnitudes of observation time error. The most successful algorithms must explicitly
account for the nonlinearity in the evolution of the prediction model.

1 Introduction

Ensemble data assimilation (DA) is one of the tools of choice
for many earth system prediction applications, including nu-
merical weather prediction and ocean prediction. DA is also
applied for a variety of other earth system applications like
sea ice (Zhang et al., 2018), space weather (Chartier et al.,
2014), pollution (Ma et al., 2019), paleoclimate (Amrhein,
2020), and the earth’s dynamo (Gwirtz et al., 2021). While
DA was originally applied to generate initial conditions for
weather prediction, it is also used for many related tasks
like generating long-term reanalyses (Compo et al., 2011),
estimating prediction model error (Zupanski and Zupanski,
2006), and evaluating the information content of existing or
planned observing systems (Jones et al., 2014).

DA can also be used to explore other aspects of obser-
vations. An important part of many operational DA predic-
tion systems is estimation and correction of the systematic
errors (bias) associated with particular instruments (Dee and
Uppala, 2009). Estimating the error variances, comprised of
both instrument error and representativeness error (Satter-
field et al., 2017), associated with particular observations is

also possible (Desroziers et al., 2005) and can be crucial to
improving the quality of DA products. DA methods have
also been extended to explore problems with the forward op-
erators, the functions used to predict the value of observa-
tions given the state variables of the prediction model. These
techniques can focus on particular aspects of forward opera-
tor deficiencies (Berry and Harlim, 2017) or attempt to do
a more general diagnosis that can improve arbitrary func-
tional estimates of forward operators, for instance, an iter-
ative method that can progressively improve the fit of the
forward observation operator to the observations inside the
data assimilation framework (Hamilton et al., 2019). Here,
DA methods for estimating and correcting errors in the time
associated with particular observations are explored.

Most observations of the earth system being taken now
have precise times associated with them that are a part of
the observation metadata. However, this is a relatively recent
development for most applications. Even for the radiosonde
network, which is one of the foundational observing systems
for the mature field of numerical weather prediction, precise
time metadata have only been universally available for a few

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



38 E. Gorokhovsky and J. L. Anderson: Assimilating time-uncertain measurements

decades (Haimberger, 2007). Before the transition to current
formats for encoding and transmitting radiosonde observa-
tions, many radiosonde data did not include detailed infor-
mation about ascent time or the time of observations at a par-
ticular height. Even the exact launch time was not always
available in earlier radiosonde data that are a key part of at-
mospheric reanalyses for the third quarter of the 20th century
(Laroche and Sarrazin, 2013).

This lack of time information is also a problem for surface-
based observations, especially those taken before the ra-
diosonde era, which relied on similarly limited encoding for-
mats. Ascertaining the time of observations becomes increas-
ingly problematic as one goes further into the past. As an ex-
ample, coordinated time zones were not defined in the United
States until the 1880s, resulting in local time uncertainty of
minutes to hours in extreme cases. In fact, the major push
for establishing coordinated time was motivated by the need
for consistent atmospheric observing systems (Bartky, 1989).
Similar issues were resolved earlier or later in other countries
and not resolved globally until the 20th century.

As historic reanalyses extend further back in time (Slivin-
ski et al., 2019), the lack of precise time information associ-
ated with observations can become an important issue. There
is also a desire to use less quantitative observations taken by
amateur observers and recorded in things like logbooks and
diaries. An example is the assimilation of total cloud cover
observations from personal records in Japan (Toride et al.,
2017). While individual observers might have rigorous ob-
serving habits, the precise time at which their observations
were taken often remains obscure. Curiously, the problem of
time error may be less for observations used for historical
ocean reanalyses (Giese et al., 2016). This is because a pre-
cise knowledge of time was required for navigation purposes.
Nevertheless, observations obtained from depth can involve
unknown delays, and failures to record the exact time associ-
ated with observations can remain (Abraham et al., 2013).

Even older observations, for instance, those associated
with paleoclimate, can have greater time uncertainty. Here,
the fundamental relationship between the observations and
the physical state of the climate system is poorly known, and
identifying the appropriate timescales is crucial to improved
DA (Amrhein, 2020). Observations related to the evolution
of the geosphere can have even more problematic time uncer-
tainty. Initial work on using DA to reconstruct the evolution
of the earth’s geodynamo highlights the problems associated
with specifying the time that should be associated with vari-
ous observations (Gwirtz et al., 2021).

Failing to account for errors in the time associated with
an observation can lead to significantly increased errors in
DA results. This is especially true if time errors are corre-
lated for a set of observations since they can result in consis-
tently biased forward operators. Section 2 briefly describes
the problem of observation time error, while Sect. 3 discusses
extensions to ensemble DA algorithms that can explicitly use
information about some aspects of time error. Section 4 de-

scribes several algorithmic extensions of ensemble DA that
can provide estimates of time error distributions. Section 5
describes an idealized test problem, while Sect. 6 presents al-
gorithms combining the results of Sects. 3 and 4 to produce a
hierarchy of ensemble DA algorithms that both estimate and
correct for observation time error. Section 7 presents results
of applying these algorithms, and Sect. 8 includes discussion
of these results and a summary.

2 Statement of the problem

The vector χ (t) is the time-dependent state of the dynami-
cal system of interest and is defined at a set of discrete times
{ti} , i = 0. . ., where ti+1 = ti +1t . The state χ is assumed
to be observed at evenly spaced analysis times starting at 0
with a period of P1t, tak+1 = t

a
k +P1t , where P is an inte-

ger. However, at each analysis time, the actual observation
is taken at an observation time, tok = t

a
k + ε

t
k , where the time

offset εtk is unknown. In this paper, we make the simplifying
assumption that εtk is drawn from a normal distribution with
mean µt and variance σ 2

t . In practice, including the exper-
iments in this paper, only the case where µt is assumed to
be 0 is relevant. This is because if µt is known, it is easy to
reduce the problem to the case where µt = 0 by advancing
the ensemble by −µt when initializing it. On the other hand,
if µt is unknown, then the problem is indistinguishable from
the case where µt = 0 but with an unknown bias in the ini-
tial ensemble. If the assimilation scheme is working properly,
this bias should disappear over time anyway.

The time errors involved with many real measurements
could be distinctly non-Gaussian. For instance, there is rea-
son to believe clock errors may be skewed. For real appli-
cation, it would be important to involve input from experts
with detailed knowledge on the expected time error distri-
butions. The case where time error is non-Gaussian can be
approached using the same arguments as in Sect. 4 but is not
explored further here.

The observations have an error εxk ∼N (0,R) with diag-
onal observation error covariance matrix R. In this work,
the observation operator is taken to be the identity, though
this assumption is discussed further in Sect. 8. Hence, the
observation at the kth analysis time is yo

k ∼ N
(
χ
(
tok
)
,R
)
.

When simulating this problem numerically, we do not have
exact knowledge of χ (tok ) when tok is not an integer multiple
of 1t ; linear interpolation is used to approximate χ (tok ) in
these cases. This approximation uses the assumption that 1t
is small enough that χ (t) is nearly linear at the scale of one
time step; if this assumption is violated, even basic ensemble
Kalman filters can be ineffective.

3 Extending ensemble Kalman filters

Algorithms are described to extend ensemble Kalman fil-
ters (Burgers et al., 1998; Tippett et al., 2003) to use infor-
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mation about the time offset of observations. Suppose the
time offset at the current analysis time, conditioned on the
value of the current observation, is distributed as εtk | y

o
k ∼

N (µ̃t, k, σ̃ 2
t,k). An ensemble Kalman filter assimilation for

this analysis time can make use of this information by ad-
justing the prior ensemble estimate (the result of applying the
forward operator to each ensemble state) and the observation
error variance. First, the ensemble prior estimate of the ob-
servations, yp

n,n= 1. . .N , where subscript n indexes the en-
semble member, and N is the ensemble size, can be selected
to simulate observations taken at (or near) time tak+µ̃t, k; this
time is the maximum likelihood estimate of the observation
time. Second, the specified observation error covariance ma-
trix R can be augmented to include contributions from un-
certainty due to the variance σ 2

τ of the estimate of the time
offset.

Two methods of obtaining the prior mean and observation
error variance are explored in the following subsections. In
both cases, assume that an ensemble of prior estimates of the
true state, xp

n(ti), is available at the same discrete times ti as
the truth χ (ti).

3.1 Extrapolation

Define v as the time derivative of the prior ensemble mean at
the analysis time,

v =
dxp

dt
(tak ), (1)

where the overbar represents an ensemble mean. The prior
state for each ensemble member can then be linearly extrap-
olated to the most likely observation time,

y
p
n = x

p
n

(
tak
)
+ µ̃t, kv (2)

(recall that the observation operator here is the identity.) This
could also be done with additional cost using the time deriva-
tive of each ensemble member, but that method is not ex-
plored here. The uncertainty in the time offset also leads to
increased uncertainty in the observations. A linear approxi-
mation gives an enhanced observation error covariance ma-
trix of

E= R+ diag(σ̃ 2
t, kv

2). (3)

This approach assumes that time errors are small enough
compared to the characteristic timescale of the system that
the linearity approximation is valid. If this is not the case, it
is more appropriate to use the more expensive method dis-
cussed in the next section. It also assumes that v is a good
estimate of the time derivative of the truth itself, dχ

dt (tak ).

3.2 Interpolation

A prior estimate of the observations for each ensemble can
be obtained by linearly interpolating the values of the state to

time tak + µ̃t, k . It is convenient to require that this time is not
earlier than the previous analysis time or later than the next
analysis time, tak−1 ≤ t

a
k + µ̃t, k ≤ t

a
k+1. In order to interpolate

values to times between those limits, it is necessary to run the
prior ensemble forecasts for up to twice as long as for a nor-
mal ensemble Kalman filter, out to tak+1. This is no more than
a doubling of the computation cost of prior forecasts for each
analysis. The prior ensemble members must also be stored
at all times between the previous and next analysis times to
facilitate interpolation. Computing the adjusted observation
error variance in a more accurate way than just extrapolating
(method 1 above) appears to be costly and complex and is
not explored further here.

4 Computing estimates of the time offset

The previous section has presented algorithms to extend en-
semble Kalman filters to cases where an estimate of the dis-
tribution of time offset τ at an analysis time is known. This
section presents algorithms for estimating the distribution of
τ at an analysis time for use in an ensemble Kalman filter.
Recall that µt is assumed to be 0 in Sect. 5 and onward.

4.1 No correction

The distribution is (incorrectly) assumed to be εtk | y
o
k ∼

N (0,0), so the default ensemble Kalman filter is applied.

4.2 Variance only

The distribution from which the time offset is drawn is used,
εtk | y

o
k ∼ N

(
µt ,σ

2
t

)
, without updating it based on the ob-

servation. Using this with extrapolation results in no change
to the prior mean but an increased observation error variance.

4.3 Impossible linear estimate

This algorithm assumes that the difference between the ob-
servation and the truth at the analysis time, d̃ = yo

k −χ
(
tak
)
,

is known; this is not possible in real systems where the truth
is unknown (hence the name “impossible”) but provides an
interesting baseline for practical algorithms. A method that
drops this assumption (and is therefore possible) is discussed
in the next section.

Assuming the system has locally linear behavior near time
tak , if εtk is sufficiently small, we can approximate χ

(
tok
)
=

χ
(
tak + ε

t
k

)
as χ

(
tak
)
+ vεtk . In that case, the difference be-

tween the observation and the truth is approximately d̃ =
(yo
k −χ

(
tok
)
)+ (χ

(
tok
)
−χ

(
tak
)
)= εxk + vε

t
k .

We want to find the relative likelihood of a particular time
offset τ , i.e., the relative probability distribution function
(PDF) p(τ ) of the distribution of εtk | y

o
k . By Bayes’ theorem,
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recalling that d̃ is known, we have

p (τ )∝ P
(
εtk = τ |ε

x
k + vε

t
k = d̃

)
∝ P

(
εxk + vε

t
k = d̃|ε

t
k = τ

)
P
(
εtk = τ

)
. (4)

εxk +vε
t
k = d̃ conditioned on εtk = τ if and only if εxk = d̃−

τv. Since εxk and εtk are independent, the assumption that εxk
is normally distributed (with mean 0 and covariance matrix
R) gives

P
(
εxk + vε

t
k = d̃|ε

t
k = τ

)
= P

(
εxk = d̃ − τv

)
∝ exp

(
−

1
2

(
d̃ − τv

)T
R−1

(
d̃ − τv

))
. (5)

Finally, the assumption that εtk is also normally distributed
(with mean µt and variance σ 2

t ) gives

p (τ )∝ exp
(
−

1
2

(
d̃ − τv

)T
R−1(d̃ − τv)

)
exp

(
−

1
2

(τ − µt )2σ−2
t

)
(6)

p (τ )∝ exp
(
−

1
2

[
d̃ TR−1d̃ +µ2

t σ
−2
t

−τ
(
d̃ TR−1v+ vTR−1d̃ + 2µtσ−2

t

)
+ τ 2β

])
, (7)

where β = vTR−1v+ σ−2
t . Note that since R is a covari-

ance matrix, it is real symmetric (hence self-adjoint), so
d̃TR−1v = v TR−1d̃:

p (τ )∝ exp

(
−
β

2

[
τ 2
− 2τ

v TR−1d̃ +µtσ
−2
t

β

+
d̃ TR−1d̃ +µ2

t σ
−2
t

β

])
. (8)

Since any constants may be absorbed into the proportionality,
completing the square yields

p (τ )∝ exp

−β
2

[
τ −

vTR−1d̃ +µtσ
−2
t

β

]2
 . (9)

This is the PDF of a normal with mean

µ̃t, k =
vTR−1 d̃ + µtσ

−2
t

β
=
vTR−1 d̃ + µtσ

−2
t

vTR−1v+ σ−2
t

(10)

and variance

σ̃ 2
t, k =

1
β
=

1

vTR−1v+ σ−2
t

. (11)

4.4 Possible linear estimate

In real applications, the difference between the observation
and the truth at the analysis time cannot be computed, but the
difference between the observation and the prior ensemble
mean, d = yo

k−x
p(tak ), can. Linearly extrapolating (again, as-

suming sufficiently linear local behavior near tak ) gives an es-
timate d ≈ εxk+vε

t
k−ε

p
k , where εp

k ∼N (0,6p(tka )) is a draw
from the prior ensemble sample covariance at the analysis
time. Here 6p(tka ) refers to the sample covariance matrix of
the prior ensemble at the analysis time tka . This assumes that
the prior ensemble distribution is consistent with the truth,
so that the truth over many analysis times is statistically in-
distinguishable from the prior ensemble members. In real ap-
plications, this is never the case. For instance, any practical
problem would certainly have model deficiencies, so that the
prior would be biased, and εp

k would have a non-zero mean.
Defining the difference of the observation error εxk and the

prior uncertainty εp
k as εδk = ε

x
k−ε

p
k , we have εδk ∼ N (0,R+

6p (tak )). The analysis for the impossible linear estimate can
be repeated by solving for the probability

p (τ )= P
(
εtk = τ |ε

δ
k + vε

t
k = d

)
(12)

in the same fashion. The result is that

µ̃t, k =
vT [R+6p (tak ) ]−1 d + µtσ

−2
t

vT [R+6p (tak ) ]−1v+ σ−2
t

(13)

and

σ 2
τ =

1

vT [R+6p (tak ) ]−1v+ σ−2
t

. (14)

Under the linearity assumption, because time error con-
tributes a Gaussian error vεtk to the observation, it is statis-
tically difficult to distinguish between the usual observation
error and error due to time offset. This can lead to time error
estimates with a magnitude that is too large. This error can
propagate to subsequent analysis times and lead to biased
prior estimates that can result in unstable feedback in the as-
similation. Section 6.3 presents evidence of this problem and
describes a solution that works for the test applications ex-
plored there.

4.5 Nonlinear estimate

As for the interpolation method in Sect. 3.2, assume that an
ensemble of prior estimates of the true state, xp

n (ti) is avail-
able at the same discrete times as the truth for tak−1 ≤ ti ≤

tak+1. Assume that the prior is normal with the ensemble giv-
ing a good estimate of the prior distribution; i.e., a priori, the
true state at time ti , χ (ti), is drawn from the multivariate nor-
mal distribution with mean xp (ti) (the average of the prior
ensemble at time ti) and covariance 6p (ti) (the covariance
of the prior ensemble). Recall that the observation error εxk is
assumed to be drawn from a normal distribution with mean 0
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and covariance R. Hence, conditioned on tok = ti for some ti ,
the relative likelihood of making the observation yo

k = y for
some y is given by a sum of Gaussians:

P
(
yo
k = y|t

o
k = ti

)
= P (εδk = y− y

o
k | t

o
k = ti)

∝N (xp (ti) , 6p (ti)+R; y), (15)

where N (µ,6;x) refers to the PDF of a normal distribution
with mean µ and covariance matrix 6, evaluated at x (in one
dimension, the PDF of a normal distribution with specified
mean and variance, evaluated at a point).

On the other hand, recall that the relative likelihood that
tok = ti is a normal distribution with mean tak and variance σ 2

t .
Hence, Bayes’ theorem gives that for each ti ∈ [tak−1, t

a
k+1],

the relative likelihood that the offset observation was taken
at this time is given by the following product:

P
(
tok = ti

)
∝N

(
xp (ti) , 6p (ti)+R; yo

k

)
N
(
tak +µt ,σ

2
t ; ti

)
. (16)

The value of ti with the largest relative likelihood given by
Eq. (16) is assumed to correspond to the maximum likeli-
hood estimate of the time offset, µ̃t, k = tak − ti . It is complex
and expensive to compute a nonlinear estimate of the vari-
ance of the offset, σ̃ 2

t, k , and that is not explored here. It is
also possible to compute the µ̃t, k in other related ways. For
example, the likelihood-weighted average of the {ti} could be
used instead. This was found to make only small differences
to the results described in Sect. 7.

5 Low-order model test problems

A set of assimilation methods described in the next section
are applied to the 40-variable model described in Lorenz and
Emmanuel (1998), referred to as the L96 model. The model
has 40 state variables X1, . . ., X40 (with X40 also labeled X0
and X39 also labeled X−1), and the evolution of the model is
given by the following 40 differential equations:

dXi
dt
=Xi−1 (Xi+1−Xi−2)−Xi+F, i = 1, . . ., 40. (17)

The forcing parameter F is set to 8 in this work. This value
was chosen by Lorenz and Emmanuel (1998) for their base-
line exploration because it is one of the smallest values that
results in chaotic dynamics. This value is used in a large num-
ber of applications of the L96 model (for example, Anderson,
2001; Dirren and Hakim, 2005; Van Leeuwen, 2010; Pires
and Perdigão, 2015).

A fourth-order Runge–Kutta time differencing scheme is
applied with a non-dimensional time step of 1t = 0.01 in-
stead of the 0.05 that is more frequently used in previous
work. The choice to use a smaller time step is intended to
make the time step smaller than the values of σt for which
the algorithm was tested. If 1t were much larger than σt ,

then most true observation times would be within one time
step of the reported observation times. Since linear interpo-
lation was used to compute the states of the system between
time steps, this would lead to time error contributing a linear
factor to overall observation error. In practical applications,
we are quite interested in the effect of the system’s nonlin-
earity on the total error in the presence of time error, which
would not be represented in the experiment if the time step
were larger.

Results are explored for five different simulated observing
systems that differ by the analysis period, P , with which ob-
servations are supposed to be taken. The periods are 5, 10,
15, 30, and 60 time steps corresponding to 0.05, 0.1, 0.15,
0.3, and 0.6 time units. Each experiment performs 1100 anal-
ysis steps, and the first 100 analysis steps (corresponding to
between 500 and 6000 time steps) are always discarded. In-
spection of time series of prior ensemble mean error suggests
that the system is equilibrated well before 100 steps for all
experiments.

For a given analysis period, the L96 model is integrated
from an initial condition of 1.0 for the first state variable and
zero for all others to generate truth trajectories. A total of
11 initial conditions are generated by saving the state every
1100 analysis times. The first initial condition is used to em-
pirically tune localization and inflation, and the other 10 are
used for 10 trials using the tuned values.

For each observing system, several values of the stan-
dard deviation of the observation time offset σt are ex-
plored. The combination of σt and an analysis period P de-
fines a case. Table 1 shows the cases explored. For each
method applied to each case, a set of 49 assimilation ex-
periments is performed using pairs of Gaspari–Cohn (Gas-
pari and Cohn, 1999) localization half-widths selected from
the set {0.125,0.15,0.175,0.2,0.25,0.4,∞} and fixed mul-
tiplicative variance inflation (Anderson and Anderson, 1999)
selected from the set {1,1.02,1.04,1.08,1.16,1.32,1.64}.
The pair of half-width and inflation that produces the min-
imum posterior ensemble mean root mean square error from
the truth is used for 10 subsequent experiments for the case
that differ only in the initial truth condition.

At each analysis time k, all 40 state variables are observed
at a time tok that has an offset εtk from the analysis time, tok =
tak + ε

t
k . All observations at a given time share the same time

offset, which is generated as a random draw from a truncated
normal distribution with mean 0, variance σ 2

t , and bounds at
±P1t .

Figure 1 shows a short segment of the trajectory of the
truth, χ (ti), for a single L96 state variable and the generation
of observations for the case with an analysis period of 0.60
and time error standard deviation of 0.2. The true observation
values ytr

k for each state variable are generated by linearly
interpolating the true state trajectory χ (ti) that is available
every 0.01 time units to the offset observing times tok (blue
circles in Fig. 1). The observation error variance is 1 for all
experiments, and the actual observations that are assimilated,
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Table 1. List of observing system cases explored. For each of the
five analysis periods, a number of different values for the time offset
standard deviation were explored.

Analysis σt
period

0.05 0, 0.0125, 0.025, 0.05
0.10 0, 0.0125, 0.025, 0.05, 0.1
0.15 0, 0.0125, 0.025, 0.05, 0.1
0.30 0, 0.0125, 0.025, 0.05, 0.1, 0.2
0.60 0, 0.0125, 0.025, 0.05, 0.1, 0.2

yo
k (yellow “X” in Fig. 1), are generated by adding an inde-

pendent draw from N (0, 1) to ytr
k for each of the 40 state

variables.
Figure 1 also shows the value of the state linearly extrap-

olated from the analysis time to the observed time as a blue
vector and teal “+”. This is analogous to the extrapolation
performed by Eq. (2) using the ensemble mean estimate as a
base point. In Eq. (2), all ensemble members are shifted by
the same vector analogous to the blue one in Fig. 1, but that
vector is an approximation of the one shown in Fig. 1. The
figure also gives a feeling for how nonlinear the time offset
problem is at a particular analysis time, i.e., where the lin-
earity assumptions in Eq. (2) would fail. For example, near
time 369.5, the linearity assumption fails and leads to addi-
tional error, while near 371.5 it is partially effective and gives
a better estimate for the truth. In cases where the linearity as-
sumption is likely to fail, it may be more appropriate to use
the interpolation method discussed in Sect. 3.2.

6 Assimilation methods

Five assimilation methods were tested for each L96 case.
All applied a standard ensemble adjustment Kalman filter
(EAKF; Anderson, 2001) with 80 members using a serial im-
plementation (Anderson, 2003) to update the ensemble with
observations. All but the first method made adjustments to
the prior observation ensemble and/or the observation error
covariance to deal with the observation time offset.

6.1 No correction (referred to as “NOCORRECTION”)

Observations were assimilated with a standard EAKF. This
is consistent with the assumption made in Sect. 4.1 that the
time offset is εtk | y

o
k = 0.

6.2 Adjust observation error variance only (referred to
as “VARONLY”)

This method assumed time offset εtk | y
o
k ∼ N

(
0,σ 2

t

)
as in

Sect. 4.2 and only adjusted the observation error variance us-
ing the linear approximation given in Eq. (3).

6.3 Possible linear correction (referred to as “LINEAR”)

This method used Eqs. (13) and (14) to compute the mean
and variance of the time offset. This distribution for τ was
then used with the extrapolation method of Sect. 3.1, using
Eq. (2) to compute prior ensemble estimates of each obser-
vation and Eq. (3) to compute the observation error variance.

A naive application of this method was not successful in
any of the L96 cases. The tuned assimilations worked suc-
cessfully for some number of analysis times, but the RMSE
of the ensemble mean always began to increase with time
before 1100 analysis times, and results were worse than for
NOCORRECTION. The magnitude of the estimate of the
mean value of the time offset

∣∣µ̃t, k∣∣ would also systemati-
cally increase with time.

This occurred because of the statistical challenge of sep-
arating observation time offset from prior model error. Sup-
pose this method was applied to a model with only a single
time-varying variable that is observed. The prior ensemble
mean will almost always have an error. If, for example, that
error has the same sign as the time tendency of the model at
the analysis time, the linear correction method will attribute
part of that error to a time offset in the observation and will
not correct the error as strongly as it would if no time offset
were assumed. This means that the forecast at the next anal-
ysis time is likely to be consistent with the model state at a
time later than the analysis time. Again, the algorithm will at-
tribute some of this error to a time offset in the observation.
The net result is that the estimated model state is likely to
drift further and further ahead of the true trajectory in time.

To avoid this problem, estimates of the time offset that
were (nearly) independent of the error for a given state vari-
able were needed. This was accomplished using a modified
version of Eq. (13) to compute a separate value of µ̃t, k for
each observation:

µ̃≈mt, k =
vT
[
R+6p (tak )]−1

d≈m

vT
[
R+6p (tak )]−1

v+ σ−2
t

. m= 1. . .M, (18)

where M is the number of observations (here, M = 40, the
size of the model, for all experiments). The vector d≈m is a
modification of the original vector d, the distance between
the observations and the prior ensemble mean at the analysis
time. The ith component of d≈m is given by

d≈mi =

{
d i, ‖i,m‖> T ;

0, ‖i,m‖ ≤ T , (19)

where T is an integer cutoff threshold, and ‖i,m‖ is the cycli-
cal distance in units of grid intervals between two variables
in the 40-variable L96 model,

‖i,m‖ =

{
|i−m| , |i−m| ≤ 20;
40− |i−m| , |i−m|> 20. (20)

For example, if m= 35, then ‖i,m‖ ≤ 10 for 25≤ i ≤ 40
and i ≤ 5.

Nonlin. Processes Geophys., 30, 37–47, 2023 https://doi.org/10.5194/npg-30-37-2023



E. Gorokhovsky and J. L. Anderson: Assimilating time-uncertain measurements 43

Figure 1. A short segment of the truth for a state variable and the observation generation process from the case with an analysis period of 0.6
and time error standard deviation of 0.2. The true trajectory is indicated by the small grey asterisks every 0.01 time units. The black asterisks
indicate the true value at each analysis time. The blue circles are the truth at the actual observed time (the analysis time plus the observation
time offset for that analysis time). The yellow crosses are the actual observations that are assimilated and are generated by adding a random
draw from N (0, 1) to the truth at the actual observed time. The teal “+” symbols indicate the result of linearly extrapolating the truth at the
analysis time to the actual observed time using the time derivative of the model at the analysis time (v in Eq. 1); a blue line segment connects
the truth to the extrapolated value.

A subset of the components of the vector d that corre-
spond to observed state variables close to the mth state vari-
able were set to 0, effectively eliminating the impact of these
state variables on the estimated time offset for the mth ob-
servation. All results shown here for the LINEAR method
used a threshold T of 10, so that 21 components (out of 40)
were set to zero. Larger or smaller values of T increased the
RMSE in tuning experiments performed for the case with
an analysis period P = 0.3 and time offset standard devia-
tion of σt = 0.1. It is likely that improved performance for
other cases could result from retuning T , but this was not ex-
plored here. Any applications of this algorithm to real prob-
lems would require tuning of the threshold.

6.4 Impossible linear correction (referred to as
“IMPOSSIBLE”)

This method used Eqs. (10) and (11) to compute the mean
and variance of the time offset. This distribution for τ was
then used with the extrapolation method of Sect. 3.1, using
Eq. (2) to compute prior ensemble estimates of each obser-
vation and Eq. (3) to compute the observation error variance.
As noted, computing d̃ for use in Eq. (10) requires knowl-
edge of the true state, so this is not a practical algorithm.
Knowledge of the truth prevents the drift away from the truth
that necessitated the use of Eq. (16) for LINEAR.

6.5 Nonlinear correction (referred to as “NONLINEAR”)

The nonlinear algorithm in Sect. 4.5 was used to estimate the
most likely value of the time offset µ̃t, k , and the interpolation
method in Sect. 3.2 was used to adjust the prior estimates of
each observation.

In addition to estimating the model state, each of the
five methods also estimated the value of the time offset,
µ̃t, k at each analysis times. Methods NOCORRECTION,
VARONLY, and LINEAR used the possible estimate from
Eq. (13), IMPOSSIBLE used the estimate from Eq. (10), and
NONLINEAR used the estimate from Sect. 4.5.

7 Results

Figure 2 shows the results for the five methods applied to all
cases. For each case, the RMSE of the prior ensemble mean
is plotted for each of the 10 trials done with each assimilation
method. The results for different methods are distinguished
by the color of the markers and the horizontal offset of the
plot columns. Note that ranges of both axes vary across the
figures and that the horizontal axis is logarithmic (with the
exception of the value for no time offset).

The blue markers (leftmost) are the results of the NO-
CORRECTION method, which ignores the time offset and
performs a standard ensemble adjustment Kalman filter with
N (0, 1) as the observation error. The VARONLY method,
shown in orange (middle), accounts for the added uncertainty
in the observation values due to the unknown time offset.
VARONLY is better than NOCORRECTION for longer anal-
ysis periods and larger time error standard deviations. There
are no cases for which VARONLY is obviously worse than
NOCORRECTION.

The LINEAR method is shown in teal (second from left).
For almost all cases, it generally produces smaller RMSE
than NOCORRECTION, with the relative improvement be-
ing largest for analysis period 0.1 and 0.15 and larger time
error standard deviation. LINEAR produces larger RMSE
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than NOCORRECTION for all cases with an analysis pe-
riod of 0.6. The poor performance for the cases with time
error standard deviation greater than 0.15 is due to errors in
the linear tangent approximation for the evolution of the L96
state trajectories (see examples for the 0.6 analysis period in
Fig. 1). LINEAR applies the same increment to the observa-
tional error variance as VARONLY. It performs better than
VARONLY for most cases. However, VARONLY is better
than LINEAR for cases with period 0.6, showing that the
additional linear correction to the prior ensemble is clearly
inappropriate for these cases.

Additional insight into the performance of LINEAR can
be gained from the results for IMPOSSIBLE, shown in black
(second from right) in the figure. Not surprisingly, since it has
access to the truth when estimating the offset, it always pro-
duces smaller RMSE than LINEAR (except for cases with
no time error). For the 0.05, 0.1, and 0.15 analysis period
cases, the RMSE for IMPOSSIBLE is nearly independent
of the time error standard deviation. This is not the case for
analysis periods 0.3 and 0.6, where the error increases as the
time error standard deviation increases. The cause of this er-
ror increase is that the linear tangent approximation becomes
inaccurate as the time error increases. However, especially
for analysis period 0.6, IMPOSSIBLE does not produce sig-
nificantly better RMSE than NOCORRECTION, even for
smaller time error standard deviation, where the linear tan-
gent approximation should normally be accurate. Apparently,
the larger prior error resulting from infrequent observations
dominates the errors introduced by the time error in these
cases.

The NONLINEAR method plotted in yellow (rightmost)
has additional information about the distribution of the time
offset and almost always performs significantly better than
NOCORRECTION. The relative importance of nonlinearity
in the prior truth trajectories is revealed by comparing the
RMSE for IMPOSSIBLE and NONLINEAR. For time error
standard deviations smaller than 0.1, IMPOSSIBLE is almost
always significantly better, but for time error standard devia-
tion of 0.1 and 0.2, NONLINEAR is always better.

All methods also produce an estimate, µ̃t, k , of the true
time offset, εtk , at each analysis time, tak . The RMSE of the
estimate for each method for cases with analysis periods of
0.1 and 0.3 is shown in Fig. 3 with the same color/position
scheme as in Fig. 2. For NOCORRECTION, the offset is es-
timated using Eq. (13), even though the offset is not used in
the algorithm. For LINEAR, the estimate is the estimate us-
ing all state variables from Eq. (13), not the revised estimates
using Eq. (16). For IMPOSSIBLE, the offset is computed us-
ing Eq. (10).

For the analysis period of 0.1 (Fig. 3a), the estimates from
all methods are always less than the specified time error stan-
dard deviation and become smaller fractions of the specified
value as the value increases. This is because it is easier to
detect time error when that error is relatively larger com-
pared to the observation error. LINEAR and VARONLY have

smaller RMSE than NOCORRECTION for larger time error
standard deviations, with LINEAR being slightly better than
VARONLY. The RMSE for NONLINEAR is much larger
than for NOCORRECTION for smaller time error standard
deviations. This is because the possible offset estimates are
selected from the discrete set of times for which the truth and
prior ensemble are computed (see Eq. 15), which are spaced
0.01 time units apart. The time offset estimates for all other
methods can take on any real value. For the case with time
error standard deviation 0.1, the nonlinearity is large enough
that the NONLINEAR estimate of the offset is comparable
to that produced by VARONLY and is better than NOCOR-
RECTION.

For the larger analysis period of 0.3 (Fig. 3b), the esti-
mate from LINEAR is not better than NOCORRECTION,
while VARONLY is better than LINEAR for larger time er-
ror standard deviations. In this case, NONLINEAR still has
the largest RMSE for cases with time error standard devia-
tion of 0.025 and 0.05 but has by far the smallest RMSE for
cases with 0.1 and 0.2.

8 Discussion and summary

A number of simplifying assumptions were made in the al-
gorithms described here. These include assuming that every
state variable is observed directly, that all observations share
the same time offset, that the observation error covariance
matrix R is diagonal, and that the time offset variance, σ 2

t ,
is known a priori. Additionally, the assumption of linearity
and the assumption that the average time offset, µt , is 0 are
discussed above.

It is straightforward to deal with some of these issues. The
assimilation problem can be recast in terms of a joint phase
space, where an extended model state vector is defined as the
union of the model state variables and prior estimates of all
observations (Anderson, 2003). Then, all observed quantities
are model state variables by definition. However, for methods
that use linear extrapolation via Eq. (1), the model equations
are no longer sufficient. One can either develop equations for
the time tendency of observations or simply use finite differ-
ence approximations to compute v for the extended state. It
is even more straightforward to extend the method to cases
where not all (extended) state variables are observed. Both
the methods for using (Sect. 3) and computing (Sect. 4) in-
formation about the time offset at the current analysis time
can be applied just to the variables that are observed.

Since a serial ensemble filter is being used for the actual
assimilation, it is possible to partition the observations into
subsets that are themselves assimilated serially. All observa-
tions that share a time offset can be assimilated as a subset,
including a subset for those observations with no time offset.

All of the methods for estimating the offset at a given anal-
ysis time except NOCORRECTION make explicit use of σ 2

t ,
the variance of the distribution from which the offsets are
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Figure 2. RMSE of the ensemble mean over 1000 analysis time steps for cases with an analysis period of (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.3,
or (e) 0.6 time units. Each dot in the graphs corresponds to an experiment run with a particular method, analysis period, and time error. A
total of 10 experiments were run for each method–analysis period combination. The horizontal axis is logarithmic except for the 0 value.

Figure 3. The RMSE of the estimate of the time offset for cases with an analysis period of (a) 0.1 time units and (b) 0.3 time units. A total
of 10 experiments were run for each of the five methods, with each method indicated by a different color. The horizontal axis is logarithmic
except for the 0 value.

drawn. If this is not known accurately, the performance of
all the algorithms is expected to degrade. However, tests in
which the value used in the assimilation was either 4 or 16
times larger than the actual value of σ 2

t led to only limited
increases in the RMSE of the various methods. It is also pos-
sible to refine the estimate of this variance by starting with
a large value and examining the estimated values of the time
offset that result.

The methods also assume that the observation error covari-
ance matrix R is diagonal, which simplifies the derivation
of the equations in Sect. 4.3 and 4.4 and allows for the se-
rial implementation. Removing this simplifying assumption

requires computing and inverting matrices of size M ×M ,
where M is the number of observations with mutually corre-
lated errors. The increase in cost is the same as for algorithms
that do not estimate time offset.

The methods described have a range of computational
costs. The VARONLY method only requires a single eval-
uation of Eqs. (2) and (3) at each analysis time step and
has an incremental cost that is a tiny fraction of the NO-
CORRECTION base filter. The LINEAR method requires an
evaluation of Eq. (16) for every observation, and Eq. (16)
requires the computation, storage, and inversion of a prior
ensemble covariance matrix. However, this matrix could be
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reduced in size to only include the subset of observations that
is used to compute the offset for each observation. It would
be application-specific to determine this size. For example,
a radiosonde would make a large number of observations,
e.g., temperature and wind at a number of levels, but many
of these are correlated in time. We can capture most of the
information about time offset from a smaller subset of the
observations and just do the inversion on those to make the
matrix small compared to the total model size.

The NONLINEAR method involves a large amount of ad-
ditional computation. The prior ensemble needs to be avail-
able over a range of times covering the possible offsets. In
the idealized cases here, that meant that ensemble forecasts
were required to extend to the second analysis time in the fu-
ture, doubling the forecast model cost. Then Eq. (15) must be
evaluated for each of the available times. The dominant cost
in Eq. (15) is computing the prior covariance matrix for the
observations that share an offset. This requires O(M2) com-
putations, where M is the number of observations. Again,
the relative cost would be highly application-specific, but this
method is the most expensive of the five.

The importance of accounting for observation time errors
in many earth system DA applications remains unexplored.
The range of methods discussed here have varying cost, but
all could be applied for at least short tests in any application
for which ensemble DA is already applicable. In particular,
applications to atmospheric reanalyses for periods well be-
fore the radiosonde era seem to be especially good candidates
for improvement. Future work will assess the algorithms pre-
sented here in both observing system simulation and real ob-
servation experiments with global atmospheric models and
observing networks from previous centuries.
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