Articles | Volume 28, issue 3
Research article
29 Jul 2021
Research article |  | 29 Jul 2021

Improving the potential accuracy and usability of EURO-CORDEX estimates of future rainfall climate using frequentist model averaging

Stephen Jewson, Giuliana Barbato, Paola Mercogliano, Jaroslav Mysiak, and Maximiliano Sassi

Related authors

Adaptive Smoothing of the Ensemble Mean of Climate Model Output for Improved Projections of Future Rainfall
Stephen Jewson, Giuliana Barbato, Paola Mercogliano, and Maximiliano Sassi
Nonlin. Processes Geophys. Discuss.,,, 2022
Publication in NPG not foreseen
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398,,, 2023
Short summary
Using orthogonal vectors to improve the ensemble space of the ensemble Kalman filter and its effect on data assimilation and forecasting
Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee
Nonlin. Processes Geophys., 30, 289–297,,, 2023
Short summary
Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning
Eugenia Kalnay, Travis Sluka, Takuma Yoshida, Cheng Da, and Safa Mote
Nonlin. Processes Geophys., 30, 217–236,,, 2023
Short summary
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166,,, 2023
Short summary
Data-driven reconstruction of partially observed dynamical systems
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137,,, 2023
Short summary

Cited articles

Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and Anderson, D.: Viewing Forced Climate Patterns Through an AI Lens, Geophys. Res. Lett., 46, 13389–13398, 2019. 
Benestad, R., Haensler, A., Hennemuth, B., Illy, T., Jacob, D., Keup-Thiel, E., Kotlarski, S., Nikulin, G., Otto, J., Rechid, D., Sieck, K., Sobolowski, S., Szabó, P., Szépszó, G., Teichmann, C., Vautard, R., Weber, T., and Zsebeházi, G.: Guidance for EURO-CORDEX, available at: (last access: 9 January 2021), 2017. 
Bernardo, J. and Smith, A.: Bayesian Theory, Wiley, New York, ISBN 0 471 49464 X, 1993. 
Brocker, J. and Smith, L.: Scoring Probabilistic Forecasts: The Importance of Being Proper, Weather Forecast., 22, 382–388, 2007. 
Burnham, K. and Anderson, D.: Model Selection and Multimodel Inference, Springer-Verlag, New York, ISBN 978-1-4419-2973-0, 2002. 
Short summary
Climate model simulations are uncertain. In some cases this makes it difficult to know how to use them. Significance testing is often used to deal with this issue but has various shortcomings. We describe two alternative ways to manage uncertainty in climate model simulations that avoid these shortcomings. We test them on simulations of future rainfall over Europe and show they produce more accurate projections than either using unadjusted climate model output or statistical testing.