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Abstract. Probabilities of future climate states can be esti-
mated by fitting distributions to the members of an ensem-
ble of climate model projections. The change in the ensem-
ble mean can be used as an estimate of the change in the
mean of the real climate. However, the level of sampling
uncertainty around the change in the ensemble mean varies
from case to case and in some cases is large. We compare
two model-averaging methods that take the uncertainty in the
change in the ensemble mean into account in the distribution
fitting process. They both involve fitting distributions to the
ensemble using an uncertainty-adjusted value for the ensem-
ble mean in an attempt to increase predictive skill relative to
using the unadjusted ensemble mean. We use the two meth-
ods to make projections of future rainfall based on a large
data set of high-resolution EURO-CORDEX simulations for
different seasons, rainfall variables, representative concentra-
tion pathways (RCPs), and points in time. Cross-validation
within the ensemble using both point and probabilistic val-
idation methods shows that in most cases predictions based
on the adjusted ensemble means show higher potential ac-
curacy than those based on the unadjusted ensemble mean.
They also perform better than predictions based on conven-
tional Akaike model averaging and statistical testing. The ad-
justments to the ensemble mean vary continuously between
situations that are statistically significant and those that are
not. Of the two methods we test, one is very simple, and
the other is more complex and involves averaging using a
Bayesian posterior. The simpler method performs nearly as
well as the more complex method.

1 Introduction

Estimates of the future climate state are often created us-
ing climate projection ensembles. Examples of such en-
sembles include the CMIP5 project (Taylor et al., 2012),
the CMIP6 project (Eyring et al., 2016) and the EURO-
CORDEX project (Jacob et al., 2014). If required, distribu-
tions can be fitted to these ensembles to produce probabilistic
predictions. The probabilities in these predictions are con-
ditional probabilities and depend on the assumptions behind
the climate model projections, such as the choice of represen-
tative concentration pathway (RCP; Moss et al., 2010; Mein-
shausen et al., 2011) and the choice of models and model
resolution. Converting climate projection ensembles to prob-
abilities in this way is helpful for those applications in which
the smoothing, interpolation and extrapolation provided by a
fitted distribution are beneficial. It is also helpful for those
applications for which the impact models can ingest proba-
bilities more easily than they can ingest individual ensem-
ble members. An example of a class of impact models that,
in many cases, possess both these characteristics would be
the catastrophe models used in the insurance industry. Catas-
trophe models quantify climate risk using simulated natural
catastrophes embedded in many tens of thousands of sim-
ulated versions of 1 year (Friedman, 1972; Kaczmarska et
al., 2018; Sassi et al., 2019). Methodologies have been de-
veloped by which these catastrophe model ensembles can be
adjusted to include climate change, based on probabilities de-
rived from climate projections (Jewson et al., 2019).
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A number of studies have investigated the post-processing
of climate model ensembles. These studies have addressed
issues such as estimation uncertainty (Deser et al., 2010;
Thompson et al., 2015; Mezghani et al., 2019), how to
break the uncertainty into components (Hawkins and Sut-
ton, 2009; Yip et al., 2011; Hingray and Said, 2014), how
to identify forced signals given the uncertainty (Frankcombe
et al., 2015; Sippel et al., 2019; Barnes et al., 2019; Wills
et al., 2020), how quickly signals emerge from the noise
given the uncertainty (Hawkins and Sutton, 2012; Lehner
et al., 2017), and how to apply weights and bias correc-
tions (Knutti et al., 2010; Christensen et al., 2010; Buser et
al., 2010; Deque et al., 2010; DelSole et al., 2013; Sanderson
et al., 2015; Knutti et al., 2017; Mearns et al., 2017; Chen
et al., 2019). In this article, we explore some of the implica-
tions of estimation uncertainty in climate model ensembles
in more detail. We will consider the case in which distribu-
tions are fitted to climate model outputs, and in particular to
changes in climate model output rather than to absolute val-
ues. When fitting distributions to changes in climate model
output, the change in the ensemble mean can be used as an
estimate of the change in the mean of the real future climate.
However, because climate model ensembles are finite in size
and different ensemble members give different results, the
ensemble mean change suffers from estimation uncertainty
when used in this way. Ensemble mean change estimation
uncertainty varies by season, variable, projection, time, and
location. In the worst cases, the uncertainty may be larger
than the change in the ensemble mean itself, and this makes
the change in the ensemble mean and distributions that have
been fitted to the changes in the ensemble potentially mis-
leading and difficult to use. In these large uncertainty cases
the change in the ensemble mean is dominated by the ran-
domness of internal variability from the individual ensem-
ble members, and it would be unfortunate if this random-
ness were allowed to influence adaptation decisions. A stan-
dard approach for managing this varying uncertainty in the
change in the ensemble mean is to consider the statistical
significance of the changes, e.g. see the shading of regions
of statistical significance in climate reports such as the EEA
report (European Environment Agency, 2017) or the IPCC
2014 report (Pachauri and Meyer, 2014). Statistical signif-
icance testing involves calculating the signal-to-noise ratio
(SNR) of the change in the ensemble mean, where the signal
is the ensemble mean change and the noise is the standard er-
ror of the ensemble mean. The SNR is then compared with a
threshold value. If the SNR is greater than the threshold, then
the signal is declared statistically significant (Wilks, 2011).

Use of statistical significance to filter climate projections
in this way is often appropriate for visualization and sci-
entific discovery. However, it is less appropriate as a post-
processing method for climate model data that are intended
for use in impact models. This is perhaps obvious, but it is
useful to review why as context and motivation for the intro-
duction of alternative methods for managing ensemble uncer-

tainty. To illustrate the shortcomings of statistical testing as a
method for ensemble post-processing, we consider a system
which applies statistical testing and sets locations with non-
significant values in the ensemble mean change to 0. The first
problem with such a system is that analysis of the properties
of predictions made using statistical testing show that they
have poor predictive skill. This is not surprising, since statis-
tical testing was never designed as a methodology for creat-
ing predictions. The second problem is that statistical testing
creates abrupt jumps of the climate change signal in space
between significant and non-significant regions and between
different RCPs and time points. These jumps are artefacts of
the use of a method with a threshold. This may lead to sit-
uations in which one location is reported to be affected by
climate change and an adjacent location not, simply because
the significance level has shifted from e.g. 95.1 % to 94.9 %.
From a practical perspective this may undermine the cred-
ibility of climate predictions in the perception of users, to
whom no reasonable physical explanation can be given for
such features of the projections. Finally, the almost univer-
sal use of a threshold p value of 95 % strongly emphasizes
avoiding false positives (type-I errors) but creates many false
negatives (type-II errors). Depending on the application, this
may not be appropriate. Large numbers of false negatives are
particularly a problem for risk modelling, since risk models
should attempt to capture all possibilities in some way, even
if of low significance.

How, then, should those who wish to make practical ap-
plication of climate model ensembles deal with the issue of
varying uncertainty in the changes implied by the ensemble
in cases where for many locations the uncertainty is large
and the implied changes are dominated by randomness? This
question might arise in any of the many applications of cli-
mate model output, such as agriculture, infrastructure man-
agement, or investment decisions. We describe and com-
pare three frequentist model-averaging (FMA) procedures
as possible answers to this question. Frequentist model-
averaging methods (Burnham and Anderson, 2002; Hjort and
Claeskens, 2003; Claeskens and Hjort, 2008; Fletcher, 2019)
are simple methods for combining outputs from different
models in order to improve predictions. They are commonly
used in economics (Hansen, 2007; Liu, 2014). Relative to
Bayesian model-averaging methods (Hoeting et al., 1999),
they have various pros and cons (Burnham and Anderson,
2002; Hjort and Claeskens, 2003; Claeskens and Hjort, 2008;
Fletcher, 2019). For our purposes, we consider the simplic-
ity, transparency, and ease of application of FMA to be ben-
efits. The averaging in our applications of FMA consists of
averaging of the usual estimate for the mean change with an
alternative estimate of the change, which is set to 0. This has
the effect of reducing the ensemble mean change towards 0.
The averaging weights, which determine the size of the re-
duction, depend on the SNR and are designed to increase the
accuracy of the prediction. They vary in space, following the
spatial variations in SNR. In regions where the SNR is large,
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these methods make no material difference to the climate pre-
diction. In regions where the SNR is small, the changes in the
ensemble mean are reduced in such a way as to increase the
accuracy of the predictions.

This approach can be considered a continuous analogue
of statistical testing in which rather than setting the change
in the ensemble mean to either 100 % or 0 % of the origi-
nal value, we allow a continuous reduction that can take any
value between 100 % and 0 % depending on the SNR. As a
result, the approach avoids the abrupt jumps created by statis-
tical testing. In summary, by reducing the randomness in the
ensemble mean (relative to the unadjusted ensemble mean),
increasing the accuracy of the predictions (relative to both the
unadjusted ensemble mean and statistical testing), and avoid-
ing the jumps introduced by statistical testing, the FMA pre-
dictions may make climate model output more appropriate
for use in impact models, i.e. more usable. The increases in
accuracy are, however, not guaranteed and need to be verified
using potential accuracy, as we describe below.

One of the three FMA methods we apply is a standard
approach based on the Akaike information criterion (AIC)
(Burnham and Anderson, 2002), which we will call AIC
model averaging (AICMA). The other two methods are ex-
amples of least-squares model-averaging (LSMA) methods
(Hansen, 2007), also known as minimum mean squared error
model-averaging methods (Charkhi et al., 2016), which are
FMA methods that focus on minimizing the mean squared
error. The two LSMA methods we consider both work by
using a simple bias-variance trade-off argument to reduce
the change captured by the ensemble mean when it is un-
certain. One of them is a standard method, and the other is
a new method that we introduce. We will call both LSMA
methods “plug-in model averaging” (PMA), since they in-
volve the simple, and standard, approach of “plugging in”
parameter estimates into a theoretical expression for the opti-
mal averaging weights (Jewson and Penzer, 2006; Claeskens
and Hjort, 2008; Liu, 2014; Charkhi et al., 2016). The first
PMA procedure we describe uses a simple plug-in estimator,
and we refer to this method as simple PMA (SPMA). The
second procedure is novel and combines a plug-in estimator
with integration over a Bayesian posterior, and we refer to
this method as Bayesian PMA (BPMA).

We illustrate and test the AICMA, SPMA, and BPMA
methods using a large data set of high-resolution EURO-
CORDEX ensemble projections of rainfall over Europe. We
consider four seasons, three rainfall variables, two RCPs, and
three future time periods, giving 72 cases in all. In Sect. 2 we
describe the EURO-CORDEX data we will use. In Sect. 3
we describe AICMA and both PMA procedures and present
some results based on simulated data which elucidate the rel-
ative performance of the different methods in different situ-
ations for both point and probabilistic predictions. In Sect. 4
we present results for 1 of the 72 cases in detail. We use
cross-validation within the ensemble to evaluate the potential
prediction skill of the FMA methods, again for both point and

Table 1. Models used in this study.

Model Driving GCM GCM member RCM

M1 CNRM-CM5 r1i1p1 ALADIN53
M2 IPSL-CM5A-MR r1i1p1 RCA4
M3 CNRM-CM5 r1i1p1 RCA4
M4 CNRM-CM5 r1i1p1 CCLM4-8-17
M5 EC-EARTH r12i1p1 CCLM4-8-17
M6 EC-EARTH r12i1p1 RACMO22E
M7 EC-EARTH r12i1p1 RCA4
M8 EC-EARTH r1i1p1 RACMO22E
M9 EC-EARTH r3i1p1 HIRHAM5
M10 IPSL-CM5A-MR r1i1p1 WRF331F

probabilistic predictions, and compare them with the skill
from using the unadjusted ensemble mean and statistical test-
ing. In Sect. 5 we present aggregate results for all 72 cases
using the same methods. In Sect. 6 we summarize and con-
clude.

2 Data and methodology

The data we use for our study are extracted from the data
archive produced by the EURO-CORDEX program (Jacob
et al., 2014, 2020), in which a number of different global
climate model simulations were downscaled over Europe us-
ing regional models at 0.11◦ resolution (about 12 km). We
use data from 10 models, each of which is a different com-
bination of a global climate model and a regional climate
model. The models are listed in Table 1. Further information
on EURO-CORDEX and the models is given in the guidance
report (Benestad et al., 2017).

We extract data for four meteorological seasons (DJF,
MAM, JJA, SON) for three aspects of rainfall: changes in
the total rainfall (RTOT), the 95th percentile of daily rain-
fall (R95), and the 99th percentile of daily rainfall (R99). We
say “rainfall” even though in some locations we may be in-
cluding other kinds of precipitation. We consider two RCPs,
RCP4.5 and RCP8.5, and the following four 30-year time
periods: 1981–2010, which serves as a baseline from which
changes are calculated, and the three target periods of 2011–
2040, 2041–2070, and 2071–2100. In total this gives 72 dif-
ferent cases (four seasons, three variables, two RCPs, and
three target time periods).

Figure 1 illustrates 1 of the 72 cases: changes in win-
ter (DJF) values for RTOT, from RCP4.5, for the years
2011–2040. This example was chosen as the first in the
database rather than for any particular properties it may pos-
sess. Figure 1a shows the ensemble mean change µ̂c (the
mean change calculated from the 10 models in the ensem-
ble) and Fig. 1b shows the standard deviation of the change
σ̂c (the standard deviation of the changes calculated from
the 10 models in the ensemble). Figure 1c shows the esti-
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Figure 1. EURO-CORDEX projections for winter, for the change in total precipitation (RTOT) between the period 2011–2040 and the
baseline 1981–2010, for RCP4.5. Panel (a) shows the ensemble mean change, panel (b) shows the ensemble standard deviation of change,
panel (c) shows the signal-to-noise ratio (SNR) and panel (d) shows the regions in which the changes in the mean are significant at the 95 %
level (shaded in lighter colour).

mated SNR ŝ calculated from the ensemble mean change
and the standard deviation of change using the expression
ŝ = n1/2

|µ̂c|/σ̂c, where the n1/2 term in this equation con-
verts the standard deviation of change (a measure of the
spread of the changes across the ensemble) to the standard
error of the ensemble mean change (a measure of the uncer-
tainty around the ensemble mean change). Finally, Fig. 1d
shows the regions in which the changes in the ensemble
mean are significant at the 95 % level, assuming normally
distributed changes. In Fig. 1a we see that the ensemble mean
change varies considerably in space, with notable increases
in RTOT in Ireland, Great Britain, and parts of France, Ger-
many, Spain, Portugal, and elsewhere. In Fig. 1b we see that
the standard deviation of change also varies considerably,
with the largest values over Portugal, parts of Spain, and
the Alps. In Fig. 1c we see that the SNR shows that many
of the changes in Ireland, Great Britain, France, Germany,
and further east have particularly high SNRs (greater than 4),
while the changes in many parts of southern Europe (Portu-
gal, Spain, Italy, and Greece) have lower values (often much
less than 1). Accordingly, Fig. 1d shows that the changes

are statistically significant throughout most of Ireland, Great
Britain, France, Germany, and eastern Europe but are mostly
not statistically significant in southern Europe. The other 71
cases show similar levels of variability of these four fields
but with different spatial patterns.

Figure 2 shows spatial mean values of the SNR (where the
spatial mean is over the entire domain shown in Fig. 1) for
all 72 cases. Each black circle is a spatial mean value of the
SNR for one case, and each of the four panels in Fig. 2 shows
the same 72 black circles but divided into sub-categories in
different ways. The horizontal lines are the averages over
the black circles in each sub-category. Figure 2a sub-divides
by season: we see that there is a clear gradient from winter
(DJF), which shows the highest values of the spatial mean
SNR, to autumn (SON), which shows the lowest values of
spatial mean SNR. Figure 2b sub-divides by rainfall variable:
in this case there is no obvious impact on the SNR values.
Figure 2c sub-divides by RCP. RCP8.5 shows higher SNR
values, as we might expect, since in the later years RCP8.5
is based on larger changes in external forcing. Figure 2d sub-
divides by time period: there is a strong gradient in SNR from
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Figure 2. Each panel shows 72 values of the spatial average SNR (black circles) derived from each of the 72 EURO-CORDEX climate
change projections described in the text, along with means within each sub-set (horizontal lines). Panel (a) shows the 72 values as a function
of season, panel (b) shows them as a function of rainfall variable, panel (c) shows them as a function of RCP, and panel (d) shows them as a
function of time period.

the first of the three time periods to the last. This is also as
expected since both RCP scenarios are based on increasing
external forcing with time. We would expect these varying
SNRs to influence the results from the FMA methods. This
will be explored in the results we present below.

3 Model-averaging methodologies

The model-averaging methodologies we apply are used to
average together uncertain projections of change with pro-
jections of no change in such a way as to try and improve
predictive skill. The AICMA method is a standard textbook
method (Burnham and Anderson, 2002; Claeskens and Hjort,
2008). The weights are determined from the AICc score,
which involves a small correction relative to the standard
AIC score. The method attempts to minimize the difference
between the real and predicted distributions as measured us-
ing the Kullback–Leibler divergence. The PMA methods are
based on a standard bias-variance trade-off argument, and the
derivations of the methods follow standard mathematical ar-
guments and proceed as follows.

3.1 Assumptions

For each location within each of the 72 cases, we first make
some assumptions about the variability of the climate model
results, the variability of future reality, and the relationship
between the climate model ensemble and future reality. All
quantities are considered to be changes from the 1981–2010
baseline. We assume that the actual future value is a sam-
ple from a distribution with unknown mean µ and variance
σ 2. We assume that the climate model values are indepen-
dent samples from a distribution with unknown mean µc and
variance σ 2

c . For the BPMA method we will additionally as-
sume that these distributions are normal distributions. With
regards to the assumption of independence of samples, this is
an approximation, since the models are not entirely indepen-
dent. Issues related to model dependence and independence
have been discussed in various papers (see the citations in
the Introduction), but it is still unclear whether attempting
to correct for dependence is beneficial or not, and so we do
not. In terms of how the climate models and reality relate to
each other, we assume that the climate model ensemble is
realistic in the sense that it captures the real distribution of
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uncertainty, and so the mean and variance parameters agree,
giving µc = µ and σ 2

c = σ
2. This is a “perfect ensemble” as-

sumption. This is not likely to be strictly correct, and real
climate model ensembles do contain errors and biases, but it
is a useful working assumption. We will write the future cli-
mate state as y and the ensemble mean, estimated in the usual
way from the ensemble, as µ̂c. Since the usual estimator for
the mean is unbiased, we can then say that

E
(
µ̂c
)
= µc = µ= E(y). (1)

If we write the ensemble variance, estimated using the usual
unbiased estimator, as σ̂ 2

c , then we can say that

E
(
σ̂ 2

c

)
= σ 2

c = σ
2
= V (y). (2)

Uncertainty around the estimate of the ensemble mean is
given by

V
(
µ̂c
)
=
σ 2

c
n
=
σ 2

n
≈
σ̂ 2

c
n
. (3)

3.2 The simple plug-in model-averaging (SPMA)
methodology

The SPMA method we use is adapted from a method used
in commercial applied meteorology, where the principles of
bias-variance trade-off were used to derive better methods
for fitting trends to observed temperature data for the pricing
of weather derivatives (Jewson and Penzer, 2006). Similar
methods have been discussed in the statistics and economics
literature (Copas, 1983; Claeskens and Hjort, 2008; Charkhi
et al., 2016). The adaptation and application of the method
to ensemble climate predictions are described in a non-peer-
reviewed technical report (Jewson and Hawkins, 2009a) but
the method was not tested extensively, and that report does
not attempt to answer the question of whether the method
really works in terms of improving predictions. The present
study is, we believe, the first attempt at large-scale testing
of any kind of FMA method using real climate predictions,
and such testing is essential to evaluate whether the methods
really are likely to improve predictions in practice.

In the SPMA method we make a new prediction of future
climate in which we adjust the ensemble mean change us-
ing a multiplicative factor k. k is an averaging weight such
that the weight on the ensemble mean is k and the weight on
a change of 0 is 1− k. Combining different predictions us-
ing weights in this way is a standard method common to all
model-averaging schemes. We write the new prediction ŷ as

ŷ = kµ̂c, (4)

where the factor k, for which we derive an expression below,
varies from 0 to 1 as a function of all the parameters of the
prediction: season, variable, RCP, time period, and spatial lo-
cation. The intuitive idea behind this prediction is that if in

one location the SNR in the ensemble is large and hence the
ensemble mean change prediction µ̂c is statistically signifi-
cant, then it makes sense to use the ensemble mean more or
less as is, and k should be close to 1. On the other hand, if
the SNR is small and hence the change in the ensemble mean
is far from statistically significant, then perhaps it is better to
use a k value closer to 0. Statistical testing sets k to either 1
or 0 depending on whether the change is significant or not,
the SPMA method (and the BPMA method described later)
allows it to vary continuously from 1 to 0.

The ensemble mean is the unique value that minimizes
MSE within the ensemble. However, when considering ap-
plications of ensembles, it is generally more appropriate to
consider out-of-sample, or predictive, MSE (PMSE). We can
calculate the statistical properties of the prediction errors for
the prediction ŷ and the PMSE as follows:

prediction error= e = y− ŷ = y− kµ̂c, (5)

bias = E(e)= E
(
y− kµ̂c

)
= E(y)−E

(
kµ̂c

)
= µ− kµ= µ(1− k), (6)

error variance= V (e)= V
(
y− kµ̂c

)
= V (y)+V

(
kµ̂c

)
= σ 2

+ k2 σ
2

n
= σ 2

(
1+

k2

n

)
, (7)

PMSE= E
[(
y− kµ̂c

)2]
= E

(
y2
− 2kyµ̂c+ k

2µ̂2
c

)
= µ2

+ σ 2
− 2kµ2

+ k2
(
µ2
+
σ 2

n

)
= µ2(1− k)2+ σ 2

(
1+

k2

n

)
= bias2

+ error variance. (8)

From the above equations we see that for k = 0 the bias
of the prediction ŷ is µ and the variance is σ 2, giving a
PMSE of µ2

+ σ 2. For k = 1 the bias is 0 and the variance
is σ 2

(
1+ 1

n

)
, giving a PMSE equal to the variance. We now

seek to find the value of k that minimizes the PMSE. The
derivative of the PMSE with respect to k is given by

dPMSE
dk

= 2k
(
µ2
+
σ 2

n

)
− 2µ2. (9)

From this we find that the PMSE has a minimum at

k =
µ2

µ2+ σ 2

n

=
1

1+ σ 2

nµ2

=
1

1+ 1
s2

, (10)

where s is the SNR s = n1/2
|µ|/σ . Equation (10) shows that

the value of k at the minimum always lies in the interval
[0,1].

We see from the above derivation that there is a value of k
between 0 and 1 which gives a lower PMSE than either the
prediction for no change (k = 0) or the unadjusted ensemble
mean (k = 1). Relative to the ensemble mean, the prediction
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based on this optimal value of k has a higher bias but a lower
variance, which is why we refer to it as a bias-variance trade-
off: in the expression for PMSE we have increased the bias-
squared term in return for a bigger reduction in the variance
term. The PMSE of this prediction is lower than the PMSE
of the prediction based on the ensemble mean because of the
reduction in the term σ 2k2

n
, which represents the contribution

to PMSE of the estimation error of the ensemble mean. For
an infinitely sized ensemble, this term would be 0 and the
optimal value of k would be 1. We can therefore see the pre-
diction ŷ as a small-sample correction to the ensemble mean,
which compensates for the fact that the ensemble mean is
partly affected by the variability across a finite ensemble.

If we could determine the optimal value of k, then we
could, without fail, produce predictions that would have a
lower PMSE than the ensemble mean. However, the expres-
sion for k given above depends on two unknown quantities,
µ2 and σ 2, and the best we can do is to attempt to estimate k
based on the information we have. The most obvious estima-
tor is that formed by simply plugging in the observed equiv-
alents of µ2 and σ 2 calculated from the ensemble, which are
µ̂2

c and σ̂ 2
c , giving the plug-in estimate for k:

k̂S =
µ̂2

c

µ̂2
c +

σ̂ 2
c
n

=
1

1+ 1
ŝ2

. (11)

This is the estimate of k that we will use in the SPMA
method. From Eq. (8) it gives predictions with a correspond-
ing PMSE of

σ 2
S = µ̂

2
c

(
1− k̂S

)2
+ σ̂ 2

c

(
1+

k̂2
S
n

)
. (12)

The fact that SPMA works by introducing a bias should not
be a cause for concern. Bias, in this sense, is an abstract sta-
tistical quantity. PMSE, which is minimized by SPMA, is of
more relevance as a measure of accuracy.

3.2.1 Relation to statistical significance

We can relate the value of the weight k̂S to the threshold for
statistical significance, since statistical testing for changes
in the mean of a normal distribution also uses the observed
SNR, in which context it is known as the t statistic. For a
sample of size 10, two-tail significance at the 95 % confi-
dence level is achieved by signals with a SNR value of 2.262
or greater. This means that if the change in the ensemble
mean gives a SNR value of greater than 2.262, then we can
be 95 % confident that the change in the mean is not just due
to random variability caused by variability between the dif-
ferent ensemble members but indicates a genuine difference
between the two ensembles caused by the different forcing.
From Eq. (11), a value of SNR of 2.262 corresponds to a k̂S
value of 0.837. All locations with k̂S values greater than this
are therefore statistically significant at the 95 % level, while

all locations with k̂S values less than this are not statistically
significant.

3.2.2 Generation of probabilistic predictions

Applying SPMA to a climate projection adjusts the mean. By
making an assumption about the shape of the distribution of
uncertainty, we can also derive a corresponding probabilistic
forecast as follows. We will assume that the distribution of
uncertainty, for given values of the estimated mean and vari-
ance µ̂c and σ̂ 2

c , is a normal distribution. For the unadjusted
ensemble mean, an appropriate predictive distribution can be
derived using standard Bayesian methods, which widen and
change the predictive distribution so as to take account of pa-
rameter uncertainty in the estimates of µ̂c and σ̂ 2

c . Bayesian
methods require priors, and sometimes the choice of prior is
difficult and arbitrary, but the normal distribution is one of
the few statistical models that have a unique objective prior
that is appropriate in the context of making predictions (see,
for example, standard Bayesian textbooks such as Lee, 1997,
or Bernardo and Smith, 1993). This prior, often known as Jef-
freys’ independence prior, has a number of attractive proper-
ties, including that the resulting predictions match with con-
fidence limits. The predictions based on this prior are t distri-
butions. If we write the probability density for a random vari-
able y that follows a t distribution with location parameter
a, scale parameter b and degrees of freedom c as St(y|abc),
then, following Bernardo and Smith (1993, p. 440), this pre-
diction can be written as

p(y)= St

(
y|µ̂c,

√
11
10
σ̂c,9

)
. (13)

The location parameter (which is also the mean of the t dis-
tribution) is given by the usual estimate for the mean, µ̂c,
the scale parameter (which is not the variance of the t dis-
tribution) is given by a slightly scaled version of the square
root of the usual unbiased estimate for the variance, σ̂c, and
the number of degrees of freedom is given by the ensemble
size minus 1. This formulation gives us probabilistic predic-
tions based on the unadjusted ensemble mean. We then mod-
ify this formation to create probabilistic predictions based
on the SPMA-adjusted ensemble mean: the distribution re-
mains a t distribution, the location parameter is given by the
SPMA-adjusted mean, the scale parameter is given in terms
of the PMSE of the SPMA prediction from Eq. (8), and the
number of degrees of freedom are again given by the ensem-
ble size minus 1. The probability density for SPMA is then
given by

p(y)= St

(
y|k̂Sµ̂c,

√
11
10
σ̂s,9

)
. (14)
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3.3 Bayesian plug-in model-averaging (BPMA)
methodology

The BPMA method was described and tested using simula-
tions in a second non-peer-reviewed technical report (Jewson
and Hawkins, 2009b) but again was not tested extensively
on real climate data. The BPMA method is an attempt to
improve on SPMA by using standard Bayesian methods to
reduce the impact of parameter uncertainty in the estimate
of the weight k. It is derived as an extension of the SPMA
method as follows. Since the prediction in the SPMA method
ŷ depends on k̂S and µ̂c and k̂S depends on µ̂c and σ̂c, we
see that the prediction, ŷ, is affected by parameter estima-
tion uncertainty in µ̂c and σ̂c. As a result of this parameter
uncertainty, the reduction applied to the ensemble mean in
SPMA might be too large, or not large enough, relative to
the ideal reduction. Since we only have 10 ensemble mem-
bers with which to estimate the reduction, this uncertainty
is large. We take a standard Bayesian approach to managing
this parameter uncertainty, using objective Bayesian meth-
ods, as follows. The observed values µ̂c and σ̂c are the best
single estimates for the real unknown values µc and σc, but
other values of µc and σc are also possible. Using Bayes’
theorem in the usual way, we can evaluate the whole distri-
bution of possible values of µc and σc by combining a prior
distribution (for which we use the standard objective prior
for the normal distribution, as used in Sect. 3.2.2 above) with
the likelihood function for µ̂c and σ̂c (which is derived from
the 10 values). This gives a posterior probability distribution
p(µ̂c, σ̂c), which tells us the distribution of possible values
of µ̂c and σ̂c that can be inferred from the data at that lo-
cation. For each possible pair of values µ̂c and σ̂c, we can
calculate an SPMA prediction ŷ = ŷ(µ̂c, σ̂c). We then com-
bine the probability distribution p(µ̂c, σ̂c) with all possible
SPMA predictions ŷ(µ̂c, σ̂c) to calculate the expected value
of ŷ, which we use as our BPMA prediction. This combina-
tion is given by the integral

ŷB =

∫ ∫
ŷ(µ̂c, σ̂c)p(µ̂c, σ̂c)dµ̂cdσ̂c. (15)

Relative to SPMA we are no longer using just a single pre-
diction for ŷ based on our best estimate values for µ̂c and
σ̂c but an average prediction based on individual predictions
derived from all the possible values for µ̂c and σ̂c. This in-
tegral could be evaluated in various different ways. We use
straightforward Monte Carlo integration in which we simu-
late pairs of values µ̂c and σ̂c from the distribution p(µ̂c, σ̂c)

and calculate ŷ for each one. We then average the many ŷ
values together to give an estimate of the expectation, ŷB. We
tested various numbers of simulations and found that simu-
lating 250 pairs of values µ̂c and σ̂c at each location was more
than sufficient to give good convergence of the results. For
purposes of comparison with the SPMA method we can then
reverse engineer an effective value of k given by k̂B = ŷB/µ̂c.
The probability density of the BPMA prediction can then be

written as

p(y)= St

(
y|k̂Bµ̂c,

√
11
10
σ̂B,9

)
, (16)

where

σ 2
B = µ̂

2
c

(
1− k̂B

)2
+ σ̂ 2

c

(
1+

k̂2
B
n

)
. (17)

3.4 Simulation results

Given that k̂S and k̂B are only estimated, there is no guaran-
tee that the predictions from the SPMA and BPMA methods
will actually have a lower PMSE than the ensemble mean, in
spite of the derivation which is based on the idea of minimiz-
ing PMSE. This is a common problem that arises in many
statistical methods, which occurs when there is a step in the
derivation in which the unknown real parameters are replaced
with estimated values. To gain some insight into the possible
impact of this issue, we can use the standard approach of
exploring the performance of SPMA and BPMA using sim-
ulations, as follows. We vary a SNR parameter from 0 to 7,
in 100 steps. For each value, we simulate 1 million synthetic
ensembles, each of 10 points from a normal distribution. For
each ensemble we create predictions using the estimated en-
semble mean, AICMA, SPMA, BPMA, and statistical test-
ing and compare the predictions with the underlying known
mean, which we know in this case because these are ensem-
bles we have generated ourselves. We calculate the predictive
root mean squared error (PRMSE) of each method relative
to the PRMSE of the estimated ensemble mean. Results are
shown in Fig. 3a. The horizontal line shows the performance
of the unadjusted ensemble mean, which is constant with
SNR and which is determined simply by the variance of the
variable being predicted and the parameter uncertainty in the
ensemble mean. The red dashed line shows the performance
of the SPMA method. We see that it does better than the en-
semble mean for small values of SNR, up to around 1.45,
and worse thereafter. For large values of the SNR, its perfor-
mance asymptotes to that of the ensemble mean. The worst
performance is for values of SNR of around 2.5. The blue
dotted line shows the performance of the BPMA method. It
shows a similar pattern of behaviour to the SPMA method:
it does better than the ensemble mean for small values of
SNR, now up to around 1.9, and worse thereafter. For both
small and large SNR values it performs worse than the SPMA
method, while for a range of intermediate values it performs
better. The purple dot-dashed line shows the performance of
statistical testing, which gives the best predictions for the
very smallest values of SNR but the poorest predictions over
a large range of intermediate SNR values. This poor predic-
tive performance is related to the use of a high threshold that
has to be crossed before any information from the ensemble
is used. The green long-dashed line shows the performance
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of AICMA, which shows results in between statistical test-
ing and the PMA methods. Comparing the four methods, we
see there is a trade-off whereby those methods that perform
best for small and large SNR values perform least well for in-
termediate values. The spatial average performance on a real
data set will then depend on the range of SNR values in that
data set. Although this graph gives us insight into the perfor-
mance of the various methods and suggests that, depending
on the range of actual SNR values, they may all perform bet-
ter than the ensemble mean in some cases, it cannot be used
as a look-up table to determine which of the methods to use.
This is because the results are shown as a function of the ac-
tual SNR value (as opposed to the estimated SNR value), and
in real cases this actual value is unknown.

We can also use simulations to test whether SPMA and
BPMA give better probabilistic predictions, for which we
need to replace PRMSE with a score that evaluates prob-
abilistic predictions. Many such scores are available: see
the discussion in textbooks such as Jolliffe and Stephenson
(2003) and Wilks (2011). We use the score which is variously
known as the log score, the log-likelihood score, the mean
log likelihood, or (after multiplying by −1) the surprisal, or
ignorance. Log score (LS) seems to be the most widely used
of these names, so we use that. Since we use the log score in
a predictive sense, we call it the predictive log score (PLS).
PLS evaluates the ability of a prediction to give reasonable
probabilities across the whole of the probability distribution.
PLS is a proper score and according to Brocker and Smith
(2007) is the only proper local score for probability forecasts
of a single variable. It also has a close relationship with mea-
sures of information in the forecast (Winkler, 1969).

Figure 3b follows Fig. 3a but now shows validation of
probabilistic predictions using the PLS. We show the PLS
values as −1 times PLS to highlight the similarities between
the results in panels (a) and (b). We only show probabilis-
tic results for the ensemble mean, SPMA, and BPMA. We
see that the pattern of change in PLS from using the two
PMA methods is almost identical to the pattern of change
in PRMSE: for small values of SNR, the PMA methods
give better probabilistic predictions than the ensemble mean,
while for large values of SNR, the PMA methods give less
good probabilistic predictions than the ensemble mean. The
relativity between SPMA and BPMA is also the same as for
PRMSE. The similarity between the results for PRMSE and
PLS can be understood using the decomposition of the PLS
given in Jewson et al. (2004), which shows that PLS can
be written as two terms, one of which is proportional to the
PRMSE.

The overall implication of these simulation results is that
whether or not the FMA methods are likely to improve
predictions of climate change depends on the SNR of the
change. For situations in which the impact of climate change
is large and unambiguous, corresponding to large SNR, such
as is often the case for temperature or sea-level rise, they
would likely make predictions slightly worse. However, for

variables such as rainfall, where the impact of climate change
is often highly uncertain, corresponding to low SNR, they
may well improve the predictions.

4 Results for RCP4.5, 2011–2040, RTOT, winter

We now show results for the SPMA method for the single
case that was previously illustrated in Fig. 1. For this case,
Fig. 4a shows values of the reduction factor k̂S, Fig. 4b shows
the adjusted ensemble mean k̂Sµ̂c, Fig. 4c shows the per-
cent change in the ensemble mean from applying SPMA, and
Fig. 4d shows the absolute (unsigned) change in the ensem-
ble mean.

In Fig. 4a we see that in the regions where the ensemble
mean is statistically significant (as shown in Fig. 1d), k̂S is
close to 1 and the SPMA method will have little effect. In the
other regions it takes a range of values, and in some regions,
e.g. parts of Spain, it is close to 0. These values of k̂S lead
to the prediction shown in Fig. 4b. The prediction does not,
overall, look much different from the unadjusted prediction
shown in Fig. 1a. The changes in the prediction are more
clearly illustrated by the percentage differences shown in
Fig. 4c and the absolute changes in Fig. 4d. SPMA does not
radically alter the patterns of climate change in the ensemble
mean: it selectively identifies locations where the changes
have high uncertainty and makes adjustments in those loca-
tions. The impact is therefore local rather than large scale.

Figure 5a shows a histogram of the values of SNR shown
on the map in Fig. 1c. There are a large number of values
below 2, which correspond to non-significant changes in the
ensemble mean. Figure 5b shows a histogram of the values
of k̂S shown on the map in Fig. 4a. Many of the k̂S values
are close to 1, corresponding to regions where the change
in the ensemble is significant and where the SPMA method
will have little impact. However, there are also values all the
way down to 0, corresponding to regions where the ensemble
mean change is not significant and where the SPMA method
will have a larger impact.

Cross-validation

We can test whether the adjusted ensemble means created
by the PMA methods are really likely to give more accurate
predictions than the unadjusted ensemble mean, as the theory
and the simulations suggest they might, by using leave-one-
out cross-validation within the ensemble. Cross-validation is
commonly used for evaluating methods for processing cli-
mate model output in this way (see e.g. Raisanen and Ylhaisi,
2010). It only evaluates potential predictive skill, however,
since, as we are considering projections of future climate,
we have no observations. We apply the following steps.

– At each location, for each of the 72 cases, we cycle
through the 10 climate models, missing out each model
in turn.
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Figure 3. Results of a simulation experiment for quantifying the performance of the two plug-in model-averaging (PMA) methods compared
with the ensemble mean, statistical testing, and AICMA. Panel (a) shows performance of point forecasts in terms of predictive root mean
squared error (PRMSE). Panel (b) shows performance of probabilistic forecasts in terms of predictive log score (PLS). The horizontal black
solid line in both panels is the performance of the unadjusted ensemble mean versus the real SNR, which would usually be unknown. The
red dashed line in both panels shows the performance of the simple PMA (SPMA) scheme and the blue dotted line in both panels shows the
performance of the Bayesian PMA (BPMA) scheme. In panel (a) the purple dot-dashed line shows the performance of statistical testing and
the green long-dashed line shows the performance of AICMA.

Figure 4. Various metrics derived from the EURO-CORDEX data shown in Fig. 1. Panel (a) shows the reduction parameter k̂s for the SPMA
method, panel (b) shows the ensemble mean reduced by the parameter k̂s, panel (c) shows the percent change in the ensemble mean from
applying SPMA, and panel (d) shows the absolute (unsigned) change.
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Figure 5. Panel (a) shows the frequency distribution of the SNR
values shown in Fig. 1c and panel (b) shows the frequency distribu-
tion of the k values shown in Fig. 3a.

– We use the nine remaining climate models to estimate
the reduction factors k̂S and k̂B.

– We make five predictions using the ensemble mean, the
SPMA method, the BPMA method, statistical signifi-
cance testing, and AICMA.

– We compare each of the five predictions with the value
from the model that was missed out.

– We calculate the PMSE over all 10 models and all loca-
tions for each of the predictions.

– We calculate the PLS over all 10 models and all loca-
tions for the ensemble mean and the PMA methods.

– We calculate the ratio of the PRMSE for the adjusted
ensemble mean and statistical significance predictions
to the PRMSE of the unadjusted ensemble mean pre-
diction, so that values less than 1 indicate a better pre-
diction than the unadjusted ensemble mean prediction.

– We also calculate the corresponding ratio for the PLS
results for the PMA methods.

For the case illustrated in Figs. 1 and 4, we find a value of
the PRMSE ratio of 0.960 for the SPMA method, 0.930 for
the BPMA method, 1.100 for significance testing, and 0.964
for AICMA. Since the SPMA, BPMA, and AICMA methods
give values that are less than 1, we see that the adjusted en-
semble means give, on average over the whole spatial field,
predictions with a lower PMSE than the ensemble mean pre-
diction. The predictions are 4 %, 7 %, and 4 % more accurate,
respectively, as estimates of the unknown mean. Since statis-
tical testing gives a value greater than 1, we see that it gives
predictions with higher PMSE than the ensemble mean pre-
diction. All these values are a combination of results from all
locations across Europe. The PMSE values from the SPMA,
BPMA, and AICMA methods are lower than those from the
ensemble mean in the spatial average but are unlikely to be
lower at every location. From the simulation results shown in
Sect. 3.4 above we know that the PMA and AICMA methods

are likely giving better results than the unadjusted ensemble
mean in regions where the SNR is low (much of southern Eu-
rope) but less good results where the SNR is high. The final
average values given above are therefore in part a reflection
of the relative sizes of the regions with low and high SNR.

The values of the PLS ratio for SPMA and BPMA are
0.9983 and 0.9982, and we see that the probabilistic predic-
tions based on the PMA-adjusted ensemble means are also
improved relative to probabilistic predictions based on the
unadjusted ensemble mean. The changes in PLS are small,
but our experience is that small changes are typical when
using PLS as a metric, as we saw in the simulation results
shown in Fig. 3b.

5 Results for 72 cases

We now expand our cross-validation testing from 1 case to
all 72 cases, across four seasons, three variables, two RCPs,
and three time horizons. Figure 6 shows the spatial means of
the estimates of k for both PMA methods for all these cases,
stratified by season, RCP, variable, and time horizon. The for-
mat of Fig. 6 follows the format of Fig. 2: each panel con-
tains 72 black circles and 72 red crosses. Each black circle is
the spatial mean over all the estimates of k from the SPMA
method for 1 of the 72 cases. Each red cross is the corre-
sponding spatial mean estimate of k from the BPMA method.
The horizontal lines show the means of the estimates within
each sub-set. Figure 6a shows that the estimates of k from
both methods decrease from DJF to SON. This is because
of the decreasing SNR values shown in Fig. 2a. The BPMA
method gives higher k estimates than the SPMA method on
average and a lower spread of values. There is no clear im-
pact of rainfall variable on the k values (Fig. 6b). Figure 6c
shows higher k values for RCP8.5 than RCP4.5, reflecting
the SNR values shown in Fig. 2c. Figure 6d shows k values
increasing with time into the future, reflecting the increasing
SNR values shown in Fig. 2d.

Figure 7 shows corresponding spatial mean PRMSE re-
sults and includes results for significance testing (blue plus
signs) and AICMA (purple triangles). For the SPMA method
the PRMSE reduces (relative to the PRMSE of the unad-
justed ensemble mean) for 45 out of 72 cases, while for
the BPMA method the PRMSE reduces for 51 out of 72
cases. Significance testing performs much worse than the
other methods and only reduces the PRMSE for 5 out of 72
cases. AICMA reduces PRMSE for 27 out of 72 cases and so
performs better than statistical testing but less well than the
unadjusted ensemble mean.

Considering the relativities of the results between SPMA,
BPMA, significance testing, and AICMA by sub-set: BPMA
gives the best results overall and beats SPMA for 10 out of
12 of the sub-sets tested. Significance testing gives the worst
results and is beaten by SPMA, BPMA, and AICMA in ev-
ery sub-set. Considering the results of SPMA, BPMA sig-
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Figure 6. Each panel shows the same 72 values of the Europe-wide spatial mean of the weights k̂S (black circles) and k̂B (red Xs) derived
from the 72 EURO-CORDEX climate change projections described in the text, along with means within each sub-set (horizontal lines).
Panel (a) shows the 72 values as a function of season, panel (b) shows them as a function of rainfall variable, panel (c) shows them as a
function of RCP, and panel (d) shows them as a function of time period.

nificance testing, and AICMA relative to the unadjusted en-
semble mean by sub-set, SPMA beats the ensemble mean for
11 out of 12 of the sub-sets tested, BPMA beats the ensem-
ble mean for 12 out of 12 of the sub-sets tested, significance
testing never beats the ensemble mean and AICMA beats the
ensemble mean for 2 out of 12 of the sub-sets tested. Consid-
ering the variation of PRMSE values by season (Fig. 7a), we
see that the SPMA, BPMA, significance testing, and AICMA
all perform gradually better through the year and best in SON
as the SNR ratio reduces (see Fig. 2a). In SON the results for
SPMA and BPMA for each of the 18 cases in that season
are individually better than the ensemble mean. Considering
the variation of PRMSE values by rainfall variable and RCP
(Fig. 7b and c), we see little obvious pattern. Considering
the variation of PRMSE values by time period, we see that
SPMA and BPMA show the largest advantage over the un-
adjusted ensemble mean for the earliest time period, again
because of the low SNR values (Fig. 2d).

Considering results over all 72 cases, we find average
PRMSE ratios of 0.956 and 0.946 for the SPMA and BPMA
methods, respectively, corresponding to estimates of the fu-

ture mean climate that are a little over 4 % and 5 % more ac-
curate than the predictions made using the unadjusted ensem-
ble mean. For significance testing we find average PRMSE
ratios of 1.226, corresponding to estimates of the future
mean climate that are roughly 23 % less accurate than the
predictions made using the unadjusted ensemble mean. For
AICMA we find average PRMSE ratios of 1.02, correspond-
ing to estimates of the future mean climate that are roughly
2 % less accurate than those from the unadjusted ensemble
mean.

Figure 8 is equivalent to Fig. 7 but shows results for PLS,
i.e. evaluates the performance of probabilistic predictions.
Given the poor performance of statistical testing and AICMA
in terms of PRMSE, we do not show their results for PLS.
We see that the PLS results are very similar to the PMSE re-
sults in Fig. 7, with BPMA showing the best results, followed
by SPMA and by the unadjusted ensemble mean. For our
EURO-CORDEX data, we conclude that making the mean
of the prediction more accurate also makes the probabilistic
prediction more accurate, which implies that the distribution
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Figure 7. Each panel shows 72 values of the PRMSE ratio from the SPMA scheme (black circles), 72 values of the PRMSE ratio from the
BPMA scheme (red Xs), 72 values of the PRMSE ratio from significance testing (blue crosses), and 72 values of the PRMSE ratio from the
AICMA scheme (purple triangles), all derived from the 72 EURO-CORDEX climate change projections described in the text, along with
means within each sub-set (horizontal lines). Panel (a) shows the 72 values as a function of season, panel (b) shows them as a function of
rainfall variable, panel (c) shows them as a function of RCP, and panel (d) shows them as a function of time period.

shape being used in the probabilistic predictions is appropri-
ate.

Further analysis

Figure 9 shows further analysis of these results. Figure 9a
shows the mean values of the estimates of k for the SPMA
and BPMA methods versus the mean SNR for all 72 cases.
The connection between the mean SNR and the mean k is
now very clear, with mean k increasing with mean SNR. This
panel also shows that the BPMA method gives higher k val-
ues on average for all values of SNR but particularly for low
values of SNR. Figure 9b explores how much the ensemble
mean is changed by the application of SPMA and BPMA
by looking at the ratio of the typical size of the ensemble
mean after adjustment to the typical size before adjustment.
This metric is calculated by first squaring each prediction
(for the three predictions consisting of the ensemble mean,
the SPMA-adjusted ensemble mean, and the BPMA-adjusted
ensemble mean), summing the squared predictions across all
locations and taking the square root to give the root mean

square size of the predictions from each method. This gives
a measure of the typical size of the predictions for each of
the three methods. The root mean square sizes for the SPMA
and BPMA predictions are then compared to the root mean
square size of the ensemble mean prediction by calculating
the ratio of one to the other, and Fig. 9b shows this ratio. By
this measure, SPMA and BPMA give very similar results:
they both apply reductions to the ensemble mean, so all the
values are below 1, and in both cases the impact is greatest
for the cases with low SNR. These are average reductions in
the size of the predictions over the whole of Europe: locally,
the reduction takes values in the whole range from 0 to 1.
Figure 9c shows the PRMSE but now calculated from rela-
tive errors relative to the spatially varying ensemble mean,
which we call PRRMSE (predictive relative RMSE). Val-
ues less than 1 for all 72 cases indicate that the PMA meth-
ods perform better than the unadjusted ensemble mean more
comprehensively by this measure. The difference between
these results and the straight PRMSE results arises because
the locations where the PMA methods improve predictions
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Figure 8. As Fig. 7 but now for 72 values of the PLS ratio derived from probabilistic forecasts from SPMA (black circles) and BPMA (red
Xs).

the most on a relative basis tend to be the ones with small
signals, which tend to have small prediction errors. These lo-
cations do not contribute very much to the straight PRMSE
but contribute more when the errors are expressed in a rel-
ative sense. Figure 9d shows a scatter plot of the PRMSE
versus the SNR for the two methods for all 72 cases. There
is a clear relation in which the PMA methods perform best
for small SNR values. The relation is similar to that shown
in the simulation experiment results shown in Fig. 3 but with
the cross-over points (shown by vertical lines) shifted to the
right, because these are now relations between averages over
many cases with different underlying values for the unknown
real SNR. We see that for every case in which the mean SNR
is less than 2.81 the SPMA method performs better than the
unadjusted ensemble mean on average, and for every case in
which the mean SNR is less than 3.02 the BPMA method
performs better than the unadjusted ensemble mean on aver-
age.

The results in Sect. 5 can be summarized as follows:
for the EURO-CORDEX rainfall data, SPMA and BPMA
give more accurate predictions on average, in both a point
and probabilistic sense, than the unadjusted ensemble mean,
AICMA, or statistical testing. BPMA gives more accurate

results than SPMA. The PMA methods do well because the
ensemble mean is uncertain and has low SNR values at many
locations. The benefits of SPMA and BPMA are greatest in
the cases with the lowest SNR values.

6 Discussion and conclusions

Ensemble climate projections can be used to derive probabil-
ity distributions for future climate, and the ensemble mean
can be used as an estimate of the mean of the distribution.
Because climate model ensembles are always finite in size,
changes in the ensemble mean are always uncertain relative
to the changes in the ensemble mean that would be given
by an infinitely sized ensemble. The ensemble mean uncer-
tainty varies in space. In regions where the signal-to-noise
ratio (SNR) of the change in the ensemble mean is high, the
change in the ensemble mean gives a precise estimate of the
change in the mean climate that would be estimated from the
infinite ensemble. However, in regions where the SNR is low,
the interpretation of the change in the ensemble mean is a lit-
tle more difficult. For instance, when the SNR is very low,
the change in the ensemble mean is little more than random
noise generated by variability in the members of the ensem-
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Figure 9. Various diagnostics for each of the 72 EURO-CORDEX climate change projections, plotted versus mean SNR. Results from
applying the SPMA scheme are shown with black circles, and results from applying the BPMA scheme are shown with red Xs. Panel (a)
shows mean values of the parameters k̂S and k̂B, panel (b) shows the reduction in the typical size of the ensemble mean (calculated as
described in the text), panel (c) shows the reduction in the relative PRMSE (the PRRMSE), and panel (d) shows the PRMSE ratio. Panel (d)
has additional vertical lines showing the cross-over points, below which the PMA results are all better than the ensemble mean results.

ble and cannot be taken as a precise estimate of the change
in mean climate of the infinite ensemble. In these cases, it
would be unfortunate if the ensemble mean were interpreted
too literally or were used to drive adaptation decisions.

We have presented two bias-variance trade-off model-
averaging algorithms that adjust the change in the ensem-
ble mean as a function of the SNR in an attempt to im-
prove predictive accuracy. We call the methods plug-in
model-averaging (PMA) methods, since they use a statisti-
cal method known as plugging-in. One method is very sim-
ple (simple PMA, SPMA), and the other is a more complex
Bayesian extension (Bayesian PMA, BPMA). The methods
can both be thought of as continuous generalizations of sta-
tistical testing, where instead of accepting or rejecting the
change in the ensemble mean, they apply continuous adjust-
ment. They can also be thought of as small-sample correc-
tions to the estimate of the ensemble mean. When the SNR is
large, the ensemble mean is hardly changed by these meth-
ods, while when the SNR is small, the change in the ensem-

ble mean is reduced towards 0 in an attempt to maximize the
predictive skill of the resulting predictions.

We have applied the PMA methods to a large data
set of high-resolution rainfall projections from the EURO-
CORDEX ensemble, for 72 different cases across four sea-
sons, three different rainfall variables, two different RCPs,
and three future time periods during the 21st century. These
data show large variations in the SNR, which results in large
variations of the extent to which the ensemble mean is ad-
justed by the methods.

We have used cross-validation within the ensemble to test
whether the adjusted ensemble means achieve greater po-
tential predictive skill for point predictions and probabilistic
predictions. To assess point predictions, we used predictive
mean squared error (PMSE), and to assess probabilistic pre-
dictions, we used predictive log score (PLS), which are both
standard measures. For both measures, we compared against
results based on the unadjusted ensemble mean. For PMSE
we have additionally compared against results based on sta-
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tistical testing and small-sample Akaike information crite-
rion model averaging (AICMA, a standard method for model
averaging). We emphasize that these calculations can only
tell us about the potential accuracy of the method, not the
actual accuracy, since we cannot compare projections of fu-
ture climate with observations. On average over all 72 cases
and all locations, the PMA methods reduce the PMSE, cor-
responding to what is roughly a 5 % increase in potential ac-
curacy in the estimate of the future mean climate. For the
SPMA method, the PMSE reduces for 45 of the 72 cases,
while for the BPMA method the PMSE reduces for 51 out of
72 cases. Which cases show a reduction in PMSE and which
not depends strongly on the mean SNR within each case in
the sense that the PMA methods perform better when the
SNR is low. For instance, the winter SNRs are high, and the
average PMSE benefits of the PMA methods are marginal.
The autumn SNRs are much lower, and the PMA methods
beat the unadjusted ensemble mean in every case. Signifi-
cance testing, by comparison, gives much worse PMSE val-
ues than the unadjusted ensemble mean, and AICMA gives
slightly worse PMSE values than the unadjusted ensemble
mean. Considering probabilistic predictions, the PLS results
also show that the PMA methods beat the unadjusted ensem-
ble mean.

The ensemble mean can be used as a stand-alone indica-
tion of the possible change in climate or as the mean of a
distribution of possible changes in a probabilistic analysis.
We conclude that, in both cases, when the ensemble mean
is highly uncertain, the PMA-adjusted ensemble means de-
scribed above can be used in its place. Applying PMA has
various advantages: (a) it reduces the possibility of over-
interpreting changes in the ensemble mean that are very un-
certain while not affecting more certain changes; (b) relative
to significance testing, it avoids jumps in the ensemble mean
change; and (c) when the SNR is low, it will likely produce
more accurate predictions than predictions based on either
the unadjusted ensemble mean or statistical testing. In ad-
dition to the above advantages, relative to statistical testing
the PMA-adjusted ensemble mean reduces the likelihood of
false negatives (i.e. not modelling a change that is real) and
increases the likelihood of false positives (i.e. modelling a
change that is not real but is just noise). Whether this is an ad-
vantage or not depends on the application but is beneficial for
risk modelling. This is because the goal in risk modelling is
to identify all possible futures, and hence no changes should
be ignored if there is some evidence for them, even if those
changes are not statistically significant.
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