Articles | Volume 27, issue 3
Nonlin. Processes Geophys., 27, 453–471, 2020
Nonlin. Processes Geophys., 27, 453–471, 2020

Research article 17 Sep 2020

Research article | 17 Sep 2020

Applications of matrix factorization methods to climate data

Dylan Harries and Terence J. O'Kane

Related authors

Application of a local attractor dimension to reduced space strongly coupled data assimilation for chaotic multiscale systems
Courtney Quinn, Terence J. O'Kane, and Vassili Kitsios
Nonlin. Processes Geophys., 27, 51–74,,, 2020
Short summary
Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability
C. L. E. Franzke, T. J. O'Kane, D. P. Monselesan, J. S. Risbey, and I. Horenko
Nonlin. Processes Geophys., 22, 513–525,,, 2015

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys. Discuss.,,, 2020
Revised manuscript accepted for NPG
Short summary
Detecting dynamical anomalies in time series from different palaeoclimate proxy archives using windowed recurrence network analysis
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275,,, 2020
Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34,,, 2020
Short summary

Cited articles

Aloise, D., Deshpande, A., Hansen, P., and Popat, P.: NP-hardness of Euclidean sum-of-squares clustering, Mach. Learn., 75, 245–248,, 2009. a
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona, I.: An extensive comparative study of cluster validity indices, Pattern Recognition, 46, 243–256, 2013. a
Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J.: Clustering with Bregman Divergences, J. Mach. Learn. Res., 6, 1705–1749,, 2005. a
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126,<1083:csapol>;2, 1987. a
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and García-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe, Science, 332, 220–224,, 2011. a
Short summary
Different dimension reduction methods may produce profoundly different low-dimensional representations of multiscale systems. We perform a set of case studies to investigate these differences. When a clear scale separation is present, similar bases are obtained using all methods, but when this is not the case some methods may produce representations that are poorly suited for describing features of interest, highlighting the importance of a careful choice of method when designing analyses.