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Abstract. An initial dimension reduction forms an integral
part of many analyses in climate science. Different meth-
ods yield low-dimensional representations that are based on
differing aspects of the data. Depending on the features of
the data that are relevant for a given study, certain methods
may be more suitable than others, for instance yielding bases
that can be more easily identified with physically meaning-
ful modes. To illustrate the distinction between particular
methods and identify circumstances in which a given method
might be preferred, in this paper we present a set of case
studies comparing the results obtained using the traditional
approaches of empirical orthogonal function analysis and k-
means clustering with the more recently introduced methods
such as archetypal analysis and convex coding. For data such
as global sea surface temperature anomalies, in which there
is a clear, dominant mode of variability, all of the methods
considered yield rather similar bases with which to represent
the data while differing in reconstruction accuracy for a given
basis size. However, in the absence of such a clear scale sep-
aration, as in the case of daily geopotential height anomalies,
the extracted bases differ much more significantly between
the methods. We highlight the importance in such cases of
carefully considering the relevant features of interest and of
choosing the method that best targets precisely those features
so as to obtain more easily interpretable results.

1 Introduction

A ubiquitous step in climate analyses is the application
of an initial dimension reduction method to obtain a low-
dimensional representation of the data under study. This is,
in part, driven by the purely practical fact that large, high-
dimensional datasets are common, and to make analysis fea-
sible, some initial reduction in dimension is required. Often,

however, we would like to associate some degree of physi-
cal significance with the elements of the reduced basis, for
instance by identifying separate modes of variability. Given
the wide variety of possible dimension reduction methods to
choose from, it is important to understand the strengths and
limitations associated with each for the purposes of a given
analysis.

Perhaps the most familiar example in climate science is
provided by an empirical orthogonal function (EOF; Lorenz,
1956; Hannachi et al., 2007) or principal component analy-
sis (PCA; Jolliffe, 1986), which identifies directions of max-
imum variance in the data, or, more generally, the directions
maximizing a chosen norm. The difficulties inherent in inter-
preting EOF modes physically have been thoroughly docu-
mented (Dommenget and Latif, 2002; Monahan et al., 2009)
and partly motivate various modifications of the basic EOF
analysis (Kaiser, 1958; Richman, 1986; Jolliffe et al., 2003;
Lee et al., 2007; Mairal et al., 2009; Witten et al., 2009; Je-
natton et al., 2010).

Another approach to constructing interpretable represen-
tations is based on cluster analysis, which, in its simplest
variants, identifies regions of phase space that are repeat-
edly visited (MacQueen, 1967; Ruspini, 1969; Dunn, 1973;
Bezdek et al., 1984). The utility of clustering-based methods
is founded on the apparent existence of recurrent flow pat-
terns over a range of timescales (Michelangeli et al., 1995).
As estimating the multidimensional probability density func-
tion (PDF) associated with the distribution of states is gen-
erally difficult, clustering methods attempt to detect group-
ings or regions of higher point density, which may in some
cases be approximations to peaks in the underlying distribu-
tion, and otherwise detect preferred weather patterns or types
(Legras et al., 1987; Mo and Ghil, 1988). Extensions to stan-
dard clustering algorithms may take into account the fact that
such patterns usually exhibit some degree of persistence or

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



454 D. Harries and T. J. O’Kane: Applications of matrix factorization methods to climate data

quasi-stationarity (Dole and Gordon, 1983; Renwick, 2005).
Hierarchical or partitioning-based clustering techniques, of
which k-means is a popular example, have been widely used
to identify spatial patterns associated with regimes or to clas-
sify circulation types (see, e.g., Mo and Ghil, 1988; Stone,
1989; Molteni et al., 1990; Cheng and Wallace, 1993; Han-
nachi and Legras, 1995; Kidson, 2000; Straus et al., 2007;
Fereday et al., 2008; Huth et al., 2008; Pohl and Fauchereau,
2012; Neal et al., 2016). Despite their widespread use, there
can be difficulties in interpreting the resulting patterns (Kid-
son, 1997), while ambiguities in selecting the number of
clusters can lead to conflicting characterizations of regimes
(Christiansen, 2007). In particular, while k-means is widely
used due to its simplicity, if the data do not fall into well-
defined, approximately spherical clusters, the method need
not provide a particularly useful classification of each sam-
ple, in which case an alternative clustering algorithm may be
more appropriate.

The output of clustering algorithms such as k-means is an
assignment of each data point to a cluster and a collection of
cluster centroids corresponding to the mean within each clus-
ter. The result is a partition of the phase space in which the
elements of each partition are taken to be well represented
by the cluster mean, as in vector quantization applications
(Lloyd, 1982; Forgey, 1965). While this can yield a useful
decomposition of the data, the ideal case occurring when the
data do indeed form well-defined clusters, a representation
in terms of cluster means is not always effective or suit-
able for all applications. For instance, the k-means centroids
need not be realized as observed points within the dataset1,
and, by virtue of their definition, will generally not afford
a good representation of edges or extrema of the observed
data. When such features are relevant, a possible alternative
is to employ methods that construct a basis from points lying
on (or outside of) the convex hull of the data. An example
of this approach is given by archetypal analysis (AA; Cutler
and Breiman, 1994; Stone and Cutler, 1996; Seth and Eu-
gster, 2016), in which the basis vectors are required to be
convex linear combinations of the data points that minimize
a suitable measure of the reconstruction error. This has the
effect of identifying points corresponding to extrema of fea-
tures within the data. Unlike partitioning-based cluster algo-
rithms such as k-means, AA does not yield a partition of the
data into a set of clusters, so that it is not so straightforward to
assign observations to a set of regimes. Instead, each obser-
vation is represented as a linear combination of the reduced
basis of archetypes with appropriate convex weights and is
in this sense similar to PCA. Compared to PCA, however,
the archetype basis may (in some cases) be more easily in-

1A simple example would be a naïve analysis of noisy annular
data, for which k-means may give rise to centroids lying within the
annulus; as noted above, in general the success of all of the methods
considered in the following will depend on the underlying topology
of the data.

terpreted, as the basis vectors correspond to extreme points
of the observed data, or convex combinations thereof, rather
than abstract directions in the data space.

Unlike PCA and standard clustering methods, AA has only
relatively recently found use in climate studies (Steinschnei-
der and Lall, 2015; Hannachi and Trendafilov, 2017). As
a result, there has been little comparison of the results of
using AA for dimension reduction versus more traditional
approaches. Dimension reduction methods such as PCA, k-
means, and AA can all be expressed generically as approx-
imately representing the data in terms of some set of basis
vectors (Mørup and Hansen, 2012), possibly with an addi-
tional stochastic error term2,

x(t)≈ x̂(t)=

k∑
i=1

zi(t)wi + ε(t), (1)

where x(t) is the d-dimensional observation at time t , x̂(t)
the corresponding reduced representation, and {wi} the set
of k basis vectors. Each method differs in the definition or
criteria used to obtain the basis {wi} and weights zi(t), and
hence the choice of method necessarily plays a key role in the
nature of the retained features in the data and the interpreta-
tion of subsequent results (Lau et al., 1994). Understanding
how the methods differ is important for assessing the appro-
priateness of each for a given task and for comparing results
between methods. For instance, AA is a natural choice when
the salient features are in close correspondence to extremal
points but might be less informative in representing data with
a regime-like or clustered structure in which a single cluster
must be represented by multiple archetypes. When the data
exhibit an elliptical distribution in phase space, modes ex-
tracted by PCA are easily interpreted, and k-means cluster-
ing can also be expected to perform well, but this need not
be the case for more complicated distributions. Thus, naïvely
we might expect that a clustering-based approach might be
more useful for the purpose of identifying recurrent regimes,
whereas AA may be a better choice for locating extremes of
the dynamics.

Ultimately though, a fuller understanding might be best
obtained by using generalizations of the above methods or
combinations of multiple methods. AA can be regarded as
a constrained convex encoding (Lee and Seung, 1997) of
the dataset, where the basis vectors are restricted to being
linear combinations of observed data points. Relaxing this
constraint allows for a more flexible reduction in which the
archetypes may not be representable as convex combinations

2Probabilistic formulations of PCA and AA have also been pro-
posed (Roweis, 1998; Tipping and Bishop, 1999; Seth and Eugster,
2016), in which the problem is formulated as inference under an
appropriate latent variable model; similarly, soft k-means is well
known to be closely related to Gaussian mixture modeling, e.g.,
MacKay (2003). For simplicity, in the following comparisons we
will only consider the deterministic formulations of the methods.
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of the data (Mørup and Hansen, 2012), although the effec-
tiveness of doing so will depend somewhat on the underly-
ing data-generating process. The problem of finding a con-
vex coding of a given dataset can be unified with PCA and
k-means clustering by phrasing each as a generic matrix fac-
torization problem (Singh and Gordon, 2008); we review the
basic formulation in Sect. 2. In addition to providing a con-
sistent framework for defining each method, it is straight-
forward to incorporate additional constraints or penalties,
e.g., for the purposes of feature selection or to induce spar-
sity (Jolliffe et al., 2003; Lee et al., 2007; Mairal et al.,
2009; Witten et al., 2009; Jenatton et al., 2010; Gerber et al.,
2020). Solving the resulting (usually constrained) optimiza-
tion problem amounts to learning a dictionary with which to
represent the data, with different methods producing differ-
ent dictionaries. By carefully defining the optimization prob-
lem, the learned dictionary can be tuned to target particu-
lar features in the data. Below, we demonstrate this process
by utilizing a recently introduced regularized convex coding
(Gerber et al., 2020), which allows for feature selection to be
performed by varying a regularization parameter. By tuning
the imposed regularization to optimize the reconstruction or
prediction error, the relative performance of selecting a basis
lying on or outside the convex hull can be compared to one
that preferentially extracts cluster means.

The purpose of this paper is to explore some of the above
issues in the context of climate applications, in the hope that
this may provide a useful aid for researchers in constructing
their own analyses. In particular, we aim to illustrate some
of the strengths and weaknesses of PCA and other dimen-
sion reduction methods, using as examples k-means, AA,
and general convex coding, by applying each method in a
set of case studies. We first apply the methods to an analy-
sis of global sea surface temperature (SST) anomalies, as in
Hannachi and Trendafilov (2017). Interannual SST variabil-
ity is in this case dominated by El Niño–Southern Oscilla-
tion (ENSO) activity (Wang et al., 2004), for which there is a
large-scale separation between this mode and the sub-leading
modes of variability, and consequently all methods are effec-
tive in detecting this feature of the data. Differences between
the methods do arise at smaller scales, however. We then con-
sider a similar analysis of daily 500 hPa geopotential height
anomalies. Unlike SST, the time series of height anomalies
generally does not exhibit noticeably large excursions corre-
sponding to weather extremes; in this case, extremes in the
data are characterized not by the amplitude of the anomalies,
but by their temporal persistence. This demonstrates a limi-
tation of all of the considered methods, namely, that (at least
in their basic formulation) persistence or quasi-stationarity is
not taken into account. Thus, a direct application of AA or
convex codings may not be effective in detecting extremes,
while clustering methods may be more informative in detect-
ing recurrent weather patterns (to the extent that any such
regimes are present in the analyzed fields).

The remainder of this paper is structured as follows. In
Sect. 2 we review the dimension reduction methods used. In
Sect. 3, we compare the results obtained using each method
in a set of case studies to illustrate the distinctions between
the methods. Finally, in Sect. 4 we summarize our observa-
tions and discuss possible future extensions.

2 Matrix factorizations

In this section, we first describe the dimension reduction
methods that we use in our case studies. As noted above,
PCA, k-means, and convex coding applied to multidimen-
sional data can all be phrased as matrix factorization prob-
lems. Given a collection3 of d-dimensional data points
x(t) ∈ Rd , t = 1, . . .,T , we may conveniently arrange the
data into a T × d design matrix X with rows formed by
the data samples. In this notation, the reduced representation
Eq. (1) becomes

X≈ X̂= ZWT , (2)

where Z ∈ RT×k is a T × k-dimensional matrix with rows
giving the weights zi(t), and W ∈ Rd×k contains the basis
vectors wi as columns. Note that here and below we assume
that the columns of X have zero mean; if not, this can always
be arranged by first centering the data,

X=
(

IT×T −
1
T

1T 1TT

)
X̃,

where X̃ denotes the original data, IT×T the T × T identity
matrix, and 1T the T -dimensional vector of ones.

The factors W and Z are calculated as the minimizers of
a suitably chosen cost function F(W,Z;X), measuring (in
some application-dependent sense) the quality of the recon-
struction X̂, subject to the constraint that they are within cer-
tain feasible regions �Z and �W ,

(W,Z)≡ arg min
Z∈�Z,W∈�W

F(W,Z;X). (3)

A typical cost function takes the form of a decomposable loss
function, measuring the reconstruction error, together with a
set of penalty terms imposing any desired regularization, i.e.,

F(W,Z;X)=
1
T

T∑
t=1

`(W,z(t);x(t))+ λW8W (W)

+ λZ8Z(Z). (4)

In Eq. (4) we have, for simplicity, supposed that W and Z
are independently regularized, with the tunable parameters

3In the following, we use notation appropriate for a time se-
ries of observations with separate samples indexed by time t , but
of course the discussion is not limited to this case.
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λW and λZ governing the amount of regularization. Common
choices for the loss function include the `2-norm4,

`(W,z(t);x(t))≡
1
2
‖x(t)−Wz(t)‖22, (5)

in which case the unregularized cost is proportional to the
residual sum of squared errors (RSS), the Kullback–Leibler
divergence for non-negative data,

`KL(W,z(t);x(t))=

d∑
i=1

(
xi(t) ln

xi(t)

(Wz(t))i
− xi(t)

+ (Wz(t))i

)
, (6)

or the wider class of Bregman divergences (Bregman, 1967;
Banerjee et al., 2005; Singh and Gordon, 2008). In addi-
tion to the soft constraints imposed by the penalty terms
8W (W) and 8Z(Z), the feasible regions �Z ⊂ RT×k and
�W ⊂ Rd×k define a set of hard constraints that must be
obeyed by the optimal solutions. The definition of a given
method thus comes down to a small number of modeling
choices regarding the cost function and feasible regions.

PCA, in its synthesis formulation, is equivalent to mini-
mizing an `2-loss function with λW = λZ = 0, i.e.,

FPCA(W,Z;X)=
1

2T

∥∥∥X−ZWT
∥∥∥2

F
, (7)

where ‖A‖F denotes the Frobenius norm of a matrix, subject
to the constraint that the reconstruction X̂ has rank at most
k. The problem in this case has a global minimum (Eckart
and Young, 1936) given by the singular value decomposition
(SVD), and the retained basis vectors wi correspond to the
directions of maximum variance. In our numerical case stud-
ies, we adopt the convention Z= U6/

√
T − 1, W= V for

the PCA factors W and Z, with the SVD of X= U6VT for
real X. While the existence of a direct numerical solution for
the optimal factorization makes PCA very flexible and easy
to apply, the basis vectors may be difficult to interpret, for in-
stance if they have many non-zero components. Sparse vari-
ants of PCA that attempt to improve on this may be arrived
at by introducing a sparsity-inducing regularization8W (W),
of which a common choice is the `1-penalty

8W (W)=

k∑
i=1

‖wi‖1. (8)

The partitioning that results from k-means clustering
may also be written in terms of a factorization X̂= ZWT .
Whereas PCA by construction yields an orthonormal basis
with which to represent the data, the k-means decomposition

4The `p-norm of a vector x ∈ Rd is given by ‖x‖p =(∑d
i=1x

p
i

)1/p
for p > 0, while for p = 0 the `0-norm is defined

as the number of non-zero components of x.

is in terms of the cluster centroids and iteratively attempts
to minimize the within-cluster variance (Hastie et al., 2005).
This is equivalent to minimizing an `2-cost function, as in
Eq. (7), subject to the constraint that the weights matrix Z has
binary elements, Zt i ∈ {0,1}, and rows with unit `1-norm,
‖z(t)‖1 = 1. In other words, the optimization is performed
within the feasible region

�Z = {Z ∈ RT×k|Zt i ∈ {0,1}, Z1k = 1T }. (9)

The corresponding basis matrix W then contains the cluster
centroids wi as columns. Although both PCA and k-means
can be seen to minimize the same objective function5, the
additional constraints in k-means clustering mean that find-
ing the exact clustering is NP-hard (Aloise et al., 2009; Ma-
hajan et al., 2012), and heuristic methods must be used in-
stead (e.g., Lloyd, 1982; Hartigan and Wong, 1979). These
iterative methods are not guaranteed to find a globally op-
timal clustering and must be either run multiple times with
different initial guesses or combined with more sophisticated
global optimization strategies to reduce the chance of finding
only a local minimum.

The convex codings that we employ below, like PCA and
k-means, are based on minimizing the least squares loss
Eq. (7). The least restricted version (Lee and Seung, 1997;
Gerber et al., 2020) requires only that the reconstruction lies
in the convex hull of the basis, or, in other words, that the
weights Z satisfy the constraints

�Z = {Z ∈ RT×k|Z� 0, Z1k = 1T }, (10)

where the condition A� 0 indicates an element-wise in-
equality. In the absence of any hard constraints on the basis
W, the optimization problem to be solved reads

(W,Z)= arg min
Z∈�Z

[
1

2T

∥∥∥X−ZWT
∥∥∥2

F
+ λW8W (W)

]
, (11)

with �Z as in Eq. (10); note that, if these constraints are
further tightened to require that the columns of Z be non-
negative and orthonormal, ZTZ= Ik×k , solving this opti-
mization problem (in general, for λW = 0) would yield the
hard k-means clustering of the data (Li and Ding, 2006). In
the absence of any regularization (λW = 0), it follows from
the Eckart–Young theorem that for a given basis size k the re-
construction error achieved by PCA is always no larger than
that achieved by this convex coding, which in turn achieves
a residual error that is smaller than that for k-means. Thus,
were the goal to simply achieve the optimal least squares re-
construction error for a given basis size, PCA remains the
preferred choice. The more constrained decomposition im-
plied by performing a convex coding may yield advantages
in terms of interpretability or feature selection. The choice of
regularization 8W provides further flexibility in this respect;

5See Ding and He (2004) for additional discussion of the rela-
tionship between PCA and k-means.
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for instance, an `1-penalty as in Eq. (8) can be used to induce
sparsity, while Gerber et al. (2020) suggest a penalty term of
the form

8W (W)=
1

dk(k− 1)

k∑
i,j=1

∥∥wi −wj∥∥2
2, (12)

observing that this places an upper bound on the sensitivity
of the reconstruction to changes in the data. It is worth noting
that, when combined with an `2-loss function, as the regular-
ization λW →∞ all of the basis vectors wi reduce to the
global mean of the dataset.

For λW = 0, the optimal basis vectors wi produced by
solving Eq. (11) will tend to lie on or outside of the convex
hull of the data. Standard AA adds a further more conserva-
tive constraint to force the wi to only lie on the convex hull,
thus requiring that the archetypes are realizable in terms of
convex combinations of the observed data. Under the more
relaxed constraints, while the overall residual error might be
reduced, one may extract basis vectors that, in reality, never
occur and so are difficult to make sense of. In AA, the ad-
ditional constraint amounts to requiring that W= XTCT for
some non-negative C ∈ Rk×T with unit `1-norm rows, i.e.,
C ∈�C with

�C = {C ∈ Rk×T |C� 0,C1T = 1k}. (13)

The corresponding optimization problem reads

(C,Z)= arg min
C∈�C ,Z∈�Z

1
2T
‖X−ZCX‖2F , (14)

with �Z as in Eq. (10). As for k-means, the optimization
problem to be solved in performing either a convex coding
or archetypal analysis cannot be solved exactly, and numeri-
cal methods must be employed to find the corresponding fac-
torization. We describe one such algorithm for doing so in
Appendix A.

The various choices of cost function and constraints defin-
ing the above methods are summarized in Table 1. While all
of the methods fit within the broader class of matrix fac-
torizations, the different choices of cost functions and con-
straints lead to important differences in the low-dimensional
representation of the data produced by each method. For in-
stance, in contrast to PCA, the basis vectors produced by k-
means, convex coding, or AA are in general not orthogonal.
In some circumstances, this non-orthogonality may be ad-
vantageous when the structure necessary to ensure orthog-
onal basis vectors (e.g., via appropriate cancellations) ob-
scures important features or makes interpretation of the full
PCA basis vectors difficult. A k-means clustering may, for
example, provide a much more natural reduction of the data
when multiple distinct, well-defined clusters are present. The
cost function and choice of constraints that define convex
coding and archetypal analysis imply that the optimal basis
vectors produced by these methods are such that their convex

hull (i.e., the set of all linear combinations of the basis vec-
tors with weights summing to one) best fits the data. Conse-
quently, both are well suited for describing data where points
can be usefully characterized in terms of their relationship
with a set of extreme values, be they spatial patterns of large
positive or negative anomalies in a geophysical field or par-
ticular combinations of spectral components in a frequency
domain representation of a signal. PCA and k-means may be
less useful in such cases, as neither yields a decomposition
of the data in terms of points at or outside of the boundaries
of the observations. AA differs from more general convex
encodings in imposing the stricter requirement that the dic-
tionary elements, i.e., the archetypes, lie on the boundary of
the data. It is, in this sense, conservative, in that the features
extracted by AA lie on the convex hull of the data and so cor-
respond to a set of extremes that are nevertheless consistent
with the observed data. In the absence of any regularization
(λW → 0), the general convex codings that we consider ad-
mit basis vectors that lie well outside of the observed data. By
doing so, the method finds a set of basis vectors whose con-
vex hull better reconstructs the data than in AA, at the cost
of representing it in terms of points that may not be phys-
ically realistic. This behavior and the impact of the differ-
ent choices of cost function and constraints are sketched in
Fig. 1.

3 Case studies

We now turn to a set of case studies that demonstrate some
of the implications of the various differences noted above
in realistic applications. We consider two particular exam-
ples that highlight the importance of considering the partic-
ular physical features of interest when choosing among pos-
sible dimension reduction methods. The first example that
we consider, an analysis of SST anomalies, is characterized
by a large separation of scales between modes of variability
together with key physical modes, particularly ENSO, that
can be directly related to extreme values of SST anomalies.
This means that the basis vectors or spatial patterns extracted
by PCA, k-means, and convex coding are for the most part
rather similar in structure, and so the choice of method may
be guided by other considerations, such as the level of recon-
struction error. We then contrast this scenario with the exam-
ple of an analysis of mid-latitude geopotential height anoma-
lies, where there is neither scale separation nor coincidence
of the physical modes solely with extreme anomaly values.
As a result, methods that are based on constructing a convex
coding of the data, without targeting features that capture the
dynamical characteristics of the relevant modes, produce rep-
resentations that are, arguably, more difficult to interpret and
hence may be less suitable than clustering-based methods.
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Table 1. Summary of the definitions of each of the four methods compared in this study. Each method is defined by a choice of cost function
to be minimized together with a set of constraints placed on the factors Z and W (or Z and C for AA). The choices for each impact that
nature of the features that each method extracts from a particular dataset.

Method Cost function Constraints Targeted features

PCA 1
2T ‖X−ZWT

‖
2
F

rank(ZWT )≤ k Directions of maximum variance
k-means 1

2T ‖X−ZWT
‖

2
F

Zt i ∈ {0,1}, Z1k = 1T Data centroids
Convex coding 1

2T ‖X−ZWT
‖

2
F
+ λW8W (W) Z� 0, Z1k = 1T Basis convex hull

AA 1
2T ‖X−ZCX‖2

F
C� 0, C1T = 1k , Z� 0, Z1k = 1T Data convex hull

Figure 1. Illustration of the different decompositions obtained using k-means, regularized convex coding (denoted GPNH), and AA, and of
the impact of the regularization parameter λW when using the penalty term Eq. (12). For increasing (from a to c) λW = 0, 100, 1000, the
number of selected features progressively decreases and the basis varies from lying outside the convex hull of the data to the global mean.

3.1 Sea surface temperature data

Following Hannachi and Trendafilov (2017), we first apply
the methods described in Sect. 2 to monthly SST data. The
source of the data is the Hadley Centre Sea Surface Temper-
ature dataset (HadISST), version 1.1 (Rayner et al., 2003),
consisting of monthly SST values on a 1◦× 1◦ global grid
spanning the time period from January 1870 to December
2018. Monthly anomalies are calculated by removing from
the full time series a linear warming trend and additive sea-
sonal component, where the annual cycle is estimated based
on the 1981 to 2010 base period. The analysis region is re-
stricted to the region between 45.5◦ N and 45.5◦ S.

As the standard and most familiar method, we first per-
form PCA on the SST anomalies over the time period Jan-
uary 1870 to December 2018 to establish a baseline set of
modes. The anomalies at each grid cell are area weighted by
the square root of the cosine of the point’s latitude. To pro-
vide a rough measure of the out-of-sample reconstruction er-
ror6, the EOFs and PCs are evaluated on the first 90 % of the
anomaly time series (i.e., January 1870 to February 2004),

6Of course, in practice proper estimates of the out-of-sample
performance would be obtained by an appropriate cross-validation
procedure or similar. However, as here we are primarily interested
in the qualitative differences between the different methods in terms
of extracting recognizable states, we do not focus on the technical
details of model selection or optimizing predictive performance and
simply present these out-of-sample estimates to show the general
features of each method.

and the root mean-square error (RMSE) defined by

RMSEtrain/test(k)=

√√√√ 1
dT

d∑
i=1

T∑
t=1

[
xi(t)− x̂i(t)

]2 (15)

is computed for the training set and for the test set consisting
of the remaining 10 % of the data. In Eq. (15), x̂i(t) is the ith
dimension of the reconstruction from k EOFs, and T refers to
the size of the training or test set, as appropriate. We consider
the results of retaining the first k modes for k = 1, . . .,40; for
reference, the first 40 modes account for approximately 85 %
of the total variance. The fraction of the total variance in the
training set associated with the leading 10 modes is shown in
Fig. 2. The most obvious feature of this variance spectrum is
the well-known separation between the first and subsequent
modes, with the first mode associated with ENSO variability
on interannual timescales and large spatial scales. This is ev-
ident in the spatial patterns of the EOFs shown in Fig. 3, in
which the first mode shows the canonical ENSO pattern of
SST anomalies, while the higher-order modes correspond to
spatially smaller-scale variability.

With the above EOF patterns as a point of reference, we
now turn to comparing the representation of the dataset pro-
duced by each of k-means, archetypal analysis, and convex
coding. In each case, the same dataset (i.e., latitude weighted,
detrended anomalies) is used as input to the dimension reduc-
tion method. The individual data points consist of anomaly
maps at each time step; in other words, the dimension reduc-
tion is performed in the state space rather than the sample
space (Efimov et al., 1995), such that each dictionary vector
corresponds to a particular spatial pattern of SST anomalies.
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Figure 2. Fraction of variance explained by the first 10 modes ob-
tained from PCA of SST anomalies.

We fit each method using dictionaries of size k = 1, . . .,20 on
the first 90 % of the dataset, using the last 10 % of samples to
provide a simple picture of out-of-sample performance.

We consider the results of a k-means clustering analysis of
the data first. For each value of k, the algorithm is restarted
100 times with different initial conditions, and the partition-
ing found to have the lowest reconstruction error is cho-
sen. As is typical of clustering procedures where the number
of clusters must be specified a priori, determining the most
appropriate choice of k is non-trivial. One commonly used
heuristic is to inspect a “scree” plot of the within-cluster sum
of squares (Tibshirani et al., 2001),

Wk =

k∑
i=1

1
|Ci |

∑
t1,t2∈Ci

‖x(t1)− x(t2)‖
2
2, (16)

where |Ci | is the size of cluster Ci as a function of the num-
ber of clusters. The preferred number of clusters k∗ is iden-
tified as the location of an elbow or kink in this curve if any
such feature is present. Alternatively, various indices (see,
e.g., Arbelaitz et al., 2013, for a review) or Monte Carlo pro-
cedures, such as the gap statistic (Tibshirani et al., 2001),
have been proposed for assessing whether a given k is suit-
able. For the present application, plots of the normalized
within-cluster sum of squares and the gap statistic computed
using 100 Monte Carlo experiments for each k with a null
model generated by PCA are shown in Fig. 4. The plot of
Wk as a function of k does not show an obvious elbow at any
particular k ≤ 20; similarly, using the gap statistic curve, one
would conclude that the k = 1 cluster is preferred7. This sim-
ply reflects the fact that the anomaly data do not form well-
separated clusters (with respect to the assumed Euclidean

7We note that, when using a null model generated by PCA, the
gap curve in Fig. 4 might be considered to indicate possible clus-
tering into five clusters within the single, large cluster. However,
this conclusion depends strongly on the precise null model used to
generate the reference data.

distance) in the full state space, making interpreting the dif-
ferent clusters as dynamically distinct regimes difficult, al-
though this does not preclude using the clustering model as
a discrete representation of the full dynamics (e.g., Kaiser
et al., 2014).

The partitioning provided by a simple clustering method
such as k-means may also still be useful in classifying sam-
ples so long as proximity in state space, or similarity more
generally, carries meaningful information for an applica-
tion. In the case of detrended SST anomalies, the magni-
tudes and spatial distribution of the anomalies are of them-
selves informative, and key drivers such as ENSO manifest
as relatively large excursions from anomalies associated with
higher-frequency variability. Consequently, a k-means clus-
tering of the anomalies does result in a partition in which the
cluster centroids, or a subset thereof, can be identified with
physical modes, as the algorithm finds several clusters con-
sisting of these extremes of the point cloud, while the remain-
der partition the bulk of the data. The simplest, if somewhat
trivial, case for which this can be seen is for k = 3 clusters,
shown in Fig. 5. Two of the plotted centroids are recogniz-
able as canonical El Niño and La Niña patterns, while the
last corresponds to a near-climatological state. The former
two clusters are dominated by months at the ends of the first
principal axis (i.e., along the leading EOF). The fact that two
clusters are required to represent both phases of the leading
EOF is due to the fact that the overall sign of the cluster cen-
troids, which correspond to points in the data space, is mean-
ingful, unlike in PCA; note that the same is true for the con-
vex coding methods to be considered below. To obtain some
sense of the relative distributions of the points within each
of the clusters, in Fig. 6 we show the projection of the data
into two dimensions generated by metric multidimensional
scaling (MDS). The points assigned to the first and second
clusters are those furthest from the mean state, while the re-
maining cluster accounts for the bulk region. The difference
between the first and second centroids is closely aligned with
the leading EOF. Similar behavior results when a larger num-
ber of clusters is specified.

The fact that, due to the dominating role of ENSO vari-
ability, a k-means clustering results in several clusters cor-
responding to large-magnitude anomalies in turn implies
that the corresponding centroids will be relatively close to
the convex hull of the anomaly point cloud. Consequently,
these centroids will also closely resemble a subset of the
archetypes derived from an archetypal analysis of the same
data, at least qualitatively. Relaxing the requirement that the
dictionary vectors lie on the convex hull, one may still ex-
pect that a convex coding applied to the data will identify
features along the same directions, albeit with inflated mag-
nitude so as to reduce the resulting reconstruction error. To
verify this, we perform a standard archetypal analysis and
a regularized convex coding of the detrended anomalies, in
each case restarting the optimization algorithm 100 times and
choosing the best encoding from the multiple starts. The reg-
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Figure 3. Spatial patterns for the leading 10 modes obtained from PCA of SST anomalies.

Figure 4. Plots of the normalized within-cluster sum of squares (a),Wk , and the corresponding gap statistic Gap(k) (b) for k-means clustering
of global SST anomalies.

ularization in Eq. (12) is used; to illustrate the effect of this
regularization, we show results for λW = 0 (i.e., no regular-
ization) and λW = 103. The fitted archetypes for k = 3 are
shown in Fig. 7, and the corresponding dictionary vectors for
the regularized convex coding are shown in Fig. 8. The pat-
terns obtained using the two methods in Figs. 7 and 8 are
very similar; in both cases, El Niño and La Niña patterns are
found together with a third configuration containing a cold
tongue in the equatorial Pacific with positive anomalies to
the north and south, as noted by Hannachi and Trendafilov
(2017). However, the magnitude of the anomalies is substan-
tially larger when using an unregularized convex coding as

the fitted dictionary vectors are chosen to sit well outside the
observed point cloud. While the states correspond to very
similar relative signs of anomalies, it is arguably more diffi-
cult to interpret the individual dictionary vectors found by the
unregularized convex coding physically, as the large anoma-
lies represent far more extreme states than are observed in
the data. On the other hand, this also permits a much smaller
reconstruction error for a given basis size and so may be
preferable when a higher-fidelity reconstruction is required8.

8Similar remarks can be made for the AA/PCH-δ model pro-
posed in Mørup and Hansen (2012).
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Figure 5. Spatial patterns of the cluster centroids obtained from a k-means clustering of SST anomalies with k = 3. The number of months
assigned to each cluster is shown above each map.

Figure 6. Two-dimensional projection of HadISST SST anomalies
obtained by metric MDS with a Euclidean distance measure. The
assignment of each point to the clusters produced by k-means clus-
tering with k = 3 in Fig. 5 is also shown.

The effect of the regularization Eq. (12) is to penalize over-
dispersion of the dictionary vectors and so select features that
are insensitive to small variations in the input data. For suffi-
ciently large λW , the resulting states lie on or within the con-
vex hull of the data and as a result are more comparable to the
states found by AA or k-means. This is illustrated in Fig. 9,
from which it can be seen that the basis vectors produced by
the regularized convex coding are closer (in Euclidean dis-
tance) to those produced by AA than the unregularized basis
vectors.

This trade-off between reproducing the data with small er-
rors and constraining the basis vectors to be close to the ob-
served data is also evident in Fig. 10, where the reconstruc-
tion RMSEs within the training and held-out test datasets for
each of the methods are plotted as a function of the dimen-
sion of the reduced-order representation. In the absence of
any regularization, the RMSE produced by a convex coding
of the data is close to the globally optimal result obtained
from PCA. For λW = 103, the obtained RMSE is larger and
similar to that for AA, while k-means leads to the largest er-
rors due to the very coarse representation of each data point
by the centroid of its assigned cluster. It follows that, for a
given number of basis vectors, an unregularized convex cod-
ing yields performance approaching that of PCA in terms of
reconstruction errors, while AA and k-means in turn are more

constrained and hence reproduce the data with somewhat
larger errors. The ordering of the methods in terms of recon-
struction error observed in Fig. 10 is expected to be the case
more generally. As noted in Sect. 2, PCA provides the glob-
ally optimal reconstruction of the data matrix with a given
rank, in the absence of any constraints, and so amounts to a
lower bound on the achievable reconstruction error. Of the
remaining methods, the additional freedom to locate the ba-
sis elements outside of the convex hull of the data when per-
forming an unregularized convex coding allows for a lower
reconstruction error than is achievable using archetypes. For
a given basis size the hard clustering resulting from k-means
generally results in the largest RMSE. For larger values of
the regularization λW , the optimal basis elements sit within
the convex hull of the data and provide a fuzzy representa-
tion of the data with a progressively increasing RMSE. In
this particular analysis of SST data, the performance of the
different methods with respect to reconstruction error is one
distinguishing factor that may guide the choice of method;
while all four produce similar large-scale spatial patterns, for
a given basis size PCA provides the lowest reconstruction er-
ror and might be preferred if information loss is a significant
concern.

3.2 Geopotential height anomalies

SST anomalies are an example of a dataset in which a domi-
nant mode is well separated in scale from subleading modes
of variability. As a result, all of the dimension reduction
methods that we consider extract similar bases (patterns)
with which to represent the data, and these can be iden-
tified with well-known physical modes. Moreover, physi-
cally interesting events such as extremes correspond to large-
magnitude anomalies relative to the mean state, i.e., at the
boundary of the point cloud, and so can be directly extracted
by those methods that look for dictionary vectors in the con-
vex hull of the data. This is not true for many variables of
interest, however, and so we now compare the behavior of
the methods when applied to data that do not exhibit these
features.

We consider Northern Hemisphere (NH) daily mean
anomalies of 500 hPa geopotential height, Z′g500 hPa, between
1 January 1958 and 31 December 2018. The geopotential
height data used are obtained from the Japanese 55-year
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Figure 7. Spatial patterns of the archetypes found from AA with k = 3 archetypes.

Figure 8. Spatial patterns for the convex coding dictionary vectors for λW = 0 (a–c) and λW = 103.

Figure 9. Two-dimensional projection of basis vectors obtained by
AA, convex coding, and k-means based on a metric MDS analysis
with Euclidean dissimilarities. The projected locations of the ba-
sis vectors for each method are indicated by the labels AA, CC,
GPNH, and K for AA, convex coding with λW = 0, convex cod-
ing with λW = 1000, and k-means, respectively. For reference, the
images under the MDS projection of line segments lying along the
directions of the first and second EOFs, with lengths proportional
to the variance explained by each, are also shown.

Reanalysis (JRA-55, Kobayashi et al., 2015; Harada et al.,
2016). Anomalies are formed by subtracting the climatolog-
ical daily mean based on the 1 January 1981 to 31 December
2010 reference period. Unlike monthly SST, there is no clear
scale separation in the resulting time series; in Fig. 11 we

show the leading EOFs and the percentage of the total vari-
ance explained by each. Additionally, the characterization of
regimes is more complicated. In particular, physically sig-
nificant features in the height field are expected to be quasi-
stationary or persistent (Michelangeli et al., 1995; Dole and
Gordon, 1983; Mo and Ghil, 1988) and are not solely dis-
tinguished by their location in the state space. Such features
may therefore be better identified as modes of the state space
PDF, arising either due to longer residency times or frequent
recurrence of particular states. Where this gives rise to re-
gions of higher density in state space, clustering algorithms
such as k-means might be expected to reasonably well rep-
resent the corresponding regimes. Convex reduction meth-
ods, on the other hand, default to being less sensitive to re-
currence; as in the preceding SST example, the fitted dictio-
nary vectors will correspond to points near the boundary of
observed data. In doing so, AA and methods based on con-
vex coding preferentially represent the data in terms of deep,
but potentially infrequent or highly transient, lows or highs.
While this remains an adequate representation simply for re-
constructing the full observations, the resulting basis may be
more difficult to relate to traditionally identified metastable
atmospheric regimes, for instance.

In the case of NH geopotential height anomalies, the clus-
ter centroids, archetypes, and dictionary basis vectors that re-
sult from applying k-means, AA, and convex coding to the
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Figure 10. Training and test set RMSE for the reconstruction of SST anomalies resulting from each of the methods.

Figure 11. Fraction of the total variance associated with each of the first 20 of 167 retained EOF modes of daily NH 500 hPa geopotential
anomalies (a) and the spatial patterns associated with the leading 4 modes. The 167 retained modes account for approximately 99 % of the
variance.

leading 167 PCs9 of Z′g500 hPa are shown for k = 4 clusters in
Fig. 12. Note that inspection of the scree plots (not shown)
does not indicate a strong preference for a given number of
clusters or states for k ≤ 20, and we choose k = 4 as a simple
example. The relative dispositions of each of the states with
respect to each other, as measured by Euclidean distance, are
visualized in Fig. 13 on the basis of a two-dimensional met-
ric MDS. In some respects, the performance of the different
methods is similar to that seen in the SST example; for ex-
ample, as expected on general grounds, the ordering of the
methods with respect to achieved RMSE (not shown) is the
same as in Fig. 10. Similarly, AA and the unregularized con-

9Clustering on the PCs was done so as to reduce the overall cost
of the methods; we have checked that, for small numbers of clusters,
the spatial patterns that result are very similar.

vex coding select, by design, basis vectors that lie on or out-
side of the convex hull of the data, with the latter having the
freedom to choose a basis corresponding to much larger de-
partures from the mean so as to reduce the reconstruction er-
ror; note that the precise degree to which the basis vectors lie
outside the convex hull will depend on the particular data at
hand, but the behavior is otherwise generic. However, unlike
the SST case, the Z′g500 hPa data do not exhibit a dominant
axis of variability; i.e., there is no clear scale separation be-
tween modes. In Fig. 13 this manifests as the absence of a
clearly preferred axis along which the basis vectors are dis-
tributed10; cf. Fig. 9. As the variance in the data is not domi-
nated by a single principal axis, the basis vectors extracted by

10Similar behavior is evident for different numbers of states; e.g.,
for k = 3 the MDS projection results in a triangular arrangement of
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Figure 12. Spatial patterns of geopotential height anomalies corresponding to the k-means centroids (first column), archetypes (second
column), convex coding basis vectors with λW = 0 (third column), and convex coding basis vectors with λW = 10.

each of the methods are more evenly distributed around the
point cloud, in turn leading to greater differences between the
fitted bases.

While all the methods identify a feature that is strongly
reminiscent of the North Atlantic Oscillation, there is some-
what more variation in the remaining representative states, in
contrast to the case of SST anomalies. In particular, the cen-
troids identified by k-means are no longer in close correspon-
dence to the representative states constructed by either AA
or an unregularized convex coding. The k-means centroids
are characterized by relatively small magnitude anomalies

points with the climatological point located close to the centroid of
the resulting shape.

with positive amplitude at longitudes associated with block-
ing (Pelly and Hoskins, 2003); in particular, the location of
the anticyclonic anomaly in cluster 3 in Fig. 12 closely co-
incides with the center of action of the EU1 (Barnston and
Livezey, 1987) or SCA (Bueh and Nakamura, 2007) pattern
associated with Scandinavian blocking. The archetypes, in
comparison, appear to exhibit a more pronounced wave-train
structure, in addition to corresponding to generally larger
magnitude anomalies. As expected, the basis obtained via an
unregularized convex coding represents far larger anomalies
again, defining representative states that are much more ex-
treme than the bulk of the observed daily anomaly fields. The
role of the regularization in feature selection is clearly illus-
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Figure 13. Two-dimensional projection of spatial patterns of geopo-
tential height anomalies obtained using the various dimension re-
duction methods by metric MDS. The results of transforming line
segments lying along the directions of the first and second EOFs, as
in Fig. 9, are also shown.

trated by comparing the two right-most columns of Fig. 12.
By increasing the regularization parameter, the method can
be tuned to place less emphasis on capturing large-amplitude,
noisy variations and target less sensitive features in the data.
In this case, for λW ≈ 1 the convex coding basis vectors are
in close agreement with the archetypes, while for λW ≈ 10
they essentially coincide with the k-means centroids. In this
sense, by appropriate choice of regularization it is possible to
interpolate between a representation of the data in terms of
points on the convex hull and mean features, depending on
how much weight is placed on minimizing the reconstruction
error. While here we consider only a few levels of regulariza-
tion for illustrative purposes, in general the degree to which
this is done, i.e., the choice of λW , can be guided by standard
model selection methods, such as cross-validation.

In the absence of any regularization, the patterns obtained
by a convex coding and by AA correspond to extreme depar-
tures from the mean state but cannot necessarily be directly
interpreted as individually representing particular physical
extremes. As noted above, this arises due to the fact that such
extremes are not necessarily associated with boundaries in
state space but may instead be due to extended residence or
persistence of a given (non-extreme) state. This difficulty in
directly relating atmospheric extremes to a basis produced
by AA or similar methods can be clearly demonstrated by
considering the representation of a given event in terms of
this basis. A dramatic example is provided by the 2010 sum-
mer heatwave in western Russia that saw an extended pe-
riod of well-above-average daily temperatures and poor air
quality and was associated with substantial excess mortality
and economic losses (Barriopedro et al., 2011; Shaposhnikov
et al., 2014). The upper-level circulation during July 2010
was characterized by persistent blocking over eastern Europe
(Dole et al., 2011; Matsueda, 2011). The associated monthly
mean pattern of height anomalies for that month (see, e.g.,

Figure 14. Time series of basis weights (lines) associated with each
archetype produced by AA and the states produced by convex cod-
ing with and without regularization, for k = 4 states during the 2010
boreal summer. The corresponding k-means cluster assignments for
each day are shown as points. Note that the monthly meanZ′g500 hPa
for July 2010 associated with the heatwave event most closely re-
sembles cluster 3 in the k-means clustering, to which most of the
daily anomalies for that month are also assigned.

Fig. 2 of Dole et al., 2011) most closely resembles the pat-
tern for cluster 3 obtained with k-means in Fig. 12. Consis-
tent with this is the fact that most days during July 2010 are
assigned to this cluster, as shown in Fig. 14. Consequently,
cluster 3 might be reasonably well interpreted as representing
(a class of) European blocking events.

In contrast, despite the severity of this event, individual
daily height anomalies during July 2010 are not unambigu-
ously identified as extremes by AA or the less constrained
convex coding. In Fig. 14 we show the time series of weights
associated with the basis vectors found by AA and by con-
vex coding either without regularization, λW = 0, or with a
regularization parameter, λW = 1, which for these data yields
dictionary vectors very similar to those found by AA. For all
three cases, roughly equal weights are assigned to each basis
vector during July 2010. The complete anomaly is therefore
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represented as a mixture of all of the dictionary vectors rather
than being assigned to a single characteristic type of extreme.
Evidently, any single basis pattern extracted by these meth-
ods does not directly correspond to a particular indicator of
extreme weather conditions; extreme events of practical con-
cern may be spread across multiple basis vectors, making
identifying such events in this representation more difficult.
The hard clustering obtained using k-means is perhaps more
easily interpreted in this case, as the resulting cluster affili-
ations show frequent occurrences of the European blocking
cluster (i.e., cluster 3 in Figs. 12 and 14) during the peak
heatwave period, with a smaller number of days assigned
to clusters 2 and 4, suggesting a clearer picture of residence
in a single, persistent blocking state. On the other hand, the
coarse representation of the actual anomalies by the single
cluster 3 centroid is poor compared to the reconstruction pro-
vided by AA and convex coding but could be improved by,
for example, making use of a soft clustering algorithm in-
stead. To summarize, in the geopotential height case where
extreme events are defined not just by large anomalies but
also by persistent structures, methods such as k-means or the
regularized convex coding applied here provide a more direct
starting point for analyses of such events. These methods bet-
ter identify the relevant structures and so provide bases that
are more amenable to interpretation in terms of physical ex-
tremes. Unregularized convex coding and archetypal analy-
sis, on the other hand, are less appropriate in this respect, as
they do not yield a direct assignment of extreme events to
individual states.

Finally, it is worth noting that, as in the SST case study, the
ambiguous classification of events provided by the convex-
hull-based methods is less of a problem when state space lo-
cation alone (e.g., temperature anomalies) is in itself a rele-
vant feature. When this is not the case, as here, methods that
take advantage of state space density, either due to recurrence
or persistence, may be more easily interpreted, or alterna-
tively hybrid approaches could be used in order to partition
the state space.

4 Conclusions

Representing a high-dimensional dataset in terms of a highly
reduced basis or dictionary is an essential step in many cli-
mate analyses. Beyond the practical necessity of doing so,
it is usually also desirable for the individual elements of the
representation to be identifiable with physically relevant fea-
tures for the sake of interpretation. A wide range of popular
dimension reduction methods, including PCA, k-means clus-
tering, AA, and convex coding, can be written down as par-
ticular forms of a basic matrix factorization problem. These
methods differ in the details of the measure of cost that is op-
timized and the feasible solution regions, with the result that
different methods yield representations suitable for target-
ing different features of the data. Of the methods considered

here, PCA extracts directions in state space corresponding to
maximal variability, k-means locates central points, and AA
and similar convex codings identify points on or outside the
convex hull of the observed data and so find a representation
in terms of extreme points in state space. As different fea-
tures may be relevant for different applications, it is impor-
tant to consider these distinctions between these factorization
methods and carefully choose a method that is effective for
extracting the features of interest.

In some cases, the representations obtained using different
dimension reduction methods are very similar, and one can
identify more or less easily interpretable features using any
given method. This is exemplified by our first case study of
SST anomalies, in which the presence of the dominant ENSO
mode ensures that PCA, k-means clustering, AA, and con-
vex coding all identify similar bases corresponding to well-
known physical modes. In this case, the main distinction be-
tween the methods arises in the nature of the classification of
the data (e.g., hard versus soft clustering) and the accuracy
with which the original data can be reconstructed for a given
level of compression.

As our second case study demonstrates, neglecting the im-
portant role played by temporal persistence in dynamically
relevant features can lead to representations that are difficult
to interpret and may not be as effective for studying persistent
states. Clustering-based approaches, or more generally meth-
ods that attempt to approximate modes in the PDF rather than
targeting the tails of the distribution, are likely to be a better
choice in these circumstances. This can also be achieved by
appropriate regularization so as to reduce sensitivity to tran-
sient features or outliers, which otherwise drive the definition
of the basis in methods such as AA. In all of the methods that
we have considered, a lack of independence in time is not ex-
plicitly modeled. Extensions to the simple methods that we
have considered to account for non-independence are also
possible, albeit usually at the cost of increased complexity.
Singular spectrum analysis (see, e.g., Jolliffe, 1986) is a fa-
miliar example of one such extension for PCA. Similar gen-
eralizations can also be constructed for convex decomposi-
tions of the data. For instance, by virtue of the decomposabil-
ity of the least squares cost function, it is possible to construct
a joint convex discretization of instantaneous and lagged val-
ues of the variables of interest, which forms the basis of the
scalable probabilistic approximation method (Gerber et al.,
2020). In this approach, the decomposition may be param-
eterized in terms of a transition matrix relating the weights
at different times, thus naturally incorporating a temporal
constraint into the discretization. An associated regulariza-
tion parameter allows the amount of temporal regularization
to be appropriately tuned. Moreover, because the optimiza-
tion problem remains separable in this case, the individual
optimization steps can be parallelized and the method re-
mains scalable. More sophisticated regularization strategies
(Horenko, 2020) can further improve upon the performance
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of the method, even in the case of relatively small sample
sizes and feature degeneracies.

The idea of imposing temporal regularization via assumed
dynamics for the latent weights suggests that another ap-
proach to better target particular features is to start from
an appropriately defined generative model or otherwise ex-
plicitly incorporate appropriate time dependence when con-
structing a reduction method. An underlying probabilistic
model is already suggested by the stochastic constraints that
are imposed on the weights in AA and in convex coding,
a feature that is already taken advantage of in the case of
the scalable probabilistic approximation. Corresponding la-
tent variable models can naturally be constructed for PCA
(Roweis, 1998; Tipping and Bishop, 1999) and AA (Seth and
Eugster, 2016). From the point of view of incorporating tem-
poral dependence between samples, starting from a proba-
bilistic model is fruitful as it is conceptually straightforward
to incorporate a model for the dynamics of the latent weights
zt (Lawrence, 2005; Wang et al., 2006; Damianou et al.,
2011). Taken together with a choice of conditional distribu-
tion for the observations, point estimation in the latent vari-
able model is once again achieved by optimization of a suit-
able loss function. Regularization is in this context provided
by suitable choice of prior distributions for the dictionary and
weights. An additional advantage of starting from a genera-
tive model is the possibility of applying the full machinery
of Bayesian inference rather than obtaining only point es-
timates (Mnih and Salakhutdinov, 2008; Salakhutdinov and
Mnih, 2008; Virtanen et al., 2008; Shan and Banerjee, 2010;
Gönen et al., 2013), although scaling such analyses remains a
challenging issue. While this approach appears to be natural
for constructing dimension reduction methods that may flex-
ibly take into account more complicated dependence struc-
tures, it is by no means guaranteed to provide improved low-
dimensional representations of the data and likely depends
heavily on choices such as the assumed generative process
for the weights. For example, in simple constructions with
weights drawn according to a Gaussian process, in the ab-
sence of strong prior information the fitted bases are driven
to be very similar to those found by ordinary PCA in order
to maximize the likelihood of the observed data, while at the
same time being substantially more expensive to fit. Thus,
the development of temporally regularized methods derived
from underlying stochastic models remains a topic for further
investigation.
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Appendix A: Numerical solution for convex coding
dictionary and archetypes

As noted in Sect. 2, the optimization problem posed in either
the convex coding case or by AA cannot be solved analyti-
cally. Moreover, the combined cost function is not convex in
the full set of variables W and Z (or C and Z for AA). It is,
though, convex in either W or Z separately, when the other
is held fixed, and local stationary points may be straightfor-
wardly found by alternating updates of the basis and weights.
For instance, using the penalty function Eq. (12), we may up-
date W with fixed Z via

W← XTZ
[

ZTZ+
4T λW
dk(k− 1)

(kIk×k − 1k×k)
]−1

. (A1)

For fixed W, Z may then be updated by projected gradient
descent. An alternative that avoids having to perform direct
projection onto the simplex (Mørup and Hansen, 2012) is to
reparameterize the latent weights Z as

Zt i =
Ht i∑k
i=1Ht i

, Ht i ≥ 0, (A2)

which automatically satisfies the stochastic constraint on
z(t), and Ht i is required only to be non-negative, making the
necessary projection trivial. The factors W and H may then
be updated via, e.g., a sequence of projected gradient descent
update steps of the form

∇WF(W,Z;X)←−
1
T
(XTZ)

+
1
T

W
[
ZTZ+ λWGW

]
, (A3a)

W←W− ηW∇WF(W,Z;X), (A3b)

∇ZF(W,Z;X)←−
1
T
XW+

1
T

ZWTW, (A3c)

Ht i←max
{
Zt i − ηH

[
(∇ZF(W,Z;X))t i

−

k∑
j=1

Ztj (∇ZF(W,Z;X))tj
]
,0
}
, (A3d)

Zt i←
Ht i∑k
i=1Ht i

, (A3e)

where, for simplicity, we have assumed that the derivative of
the penalty term 8W may be written in the form

∂8W

∂W
=

1
T

WGW ,

which is the case if, for instance, 8W ∝ Tr
[
WGWWT

]
for

some symmetric matrix GW . The step-size parameters ηW
and ηH may either be fixed or determined by performing a
line search. This procedure may be iterated until the suc-
cessive changes in the total cost fall below a given toler-
ance. As convergence to a global minimum is not guaran-
teed, in practice this procedure is repeated for multiple ini-
tial guesses for W and Z to try to improve the likelihood
of locating the optimal solution. Inspecting the update equa-
tions Eq. (A1), the cost per iteration is seen to scale as
O(dT k)+O(k2T )+O(k2d)+O(kd)+O(kT ). In partic-
ular, in the usual case of interest with d,T � k, the lead-
ing contribution to the cost is linear in each of d , T , and k,
i.e., O(dT k), making the method suitable for large datasets
and comparable with k-means and similar decompositions
(Mørup and Hansen, 2012; Gerber et al., 2020).
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Code and data availability. The HadISST SST dataset used in this
study is provided by the UK Met Office Hadley Centre and may be
accessed at https://www.metoffice.gov.uk/hadobs/hadisst/ (Rayner
et al., 2003). The JRA-55 geopotential height data used are made
available through the JRA-55 project and may be accessed fol-
lowing the procedures described at https://jra.kishou.go.jp/JRA-55/
index_en.html (Kobayashi et al., 2015). All source code used to
perform the analyses presented in the main text may be found
at https://doi.org/10.5281/zenodo.3723948 (Harries and O’Kane,
2020). The PCA and k-means results and the visualizations us-
ing metric MDS were obtained using the routines provided by the
scikit-learn Python package (Pedregosa et al., 2011). Plots were
generated using Python package Matplotlib (Hunter, 2007).
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