Articles | Volume 32, issue 2
https://doi.org/10.5194/npg-32-167-2025
https://doi.org/10.5194/npg-32-167-2025
Research article
 | 
23 Jun 2025
Research article |  | 23 Jun 2025

Multilevel Monte Carlo methods for ensemble variational data assimilation

Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon

Related authors

The similarity-based method: a new object detection method for deterministic and ensemble weather forecasts
Lucie Rottner, Philippe Arbogast, Mayeul Destouches, Yamina Hamidi, and Laure Raynaud
Adv. Sci. Res., 16, 209–213, https://doi.org/10.5194/asr-16-209-2019,https://doi.org/10.5194/asr-16-209-2019, 2019

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
Nonlin. Processes Geophys., 32, 117–130, https://doi.org/10.5194/npg-32-117-2025,https://doi.org/10.5194/npg-32-117-2025, 2025
Short summary
Long-window hybrid variational data assimilation methods for chaotic climate models tested with the Lorenz 63 system
Philip David Kennedy, Abhirup Banerjee, Armin Köhl, and Detlef Stammer
EGUsphere, https://doi.org/10.48550/arXiv.2403.03166,https://doi.org/10.48550/arXiv.2403.03166, 2024
Short summary
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary

Cited articles

Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. Roy. Meteor. Soc., 134, 1951–1970, https://doi.org/10.1002/qj.339, 2008a. a
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics, Q. J. Roy. Meteor. Soc., 134, 1971–1996, https://doi.org/10.1002/qj.340, 2008b. a
Beiser, F., Holm, H. H., Lye, K. O., and Eidsvik, J.: Multi-level data assimilation for ocean forecasting using the shallow-water equations, J. Comput. Phys., 524, 113722, https://doi.org/10.1016/j.jcp.2025.113722, 2025. a
Bierig, C. and Chernov, A.: Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems, Numer. Math., 130, 579–613, https://doi.org/10.1007/s00211-014-0676-3, 2015. a
Bonavita, M., Raynaud, L., and Isaksen, L.: Estimating background-error variances with the ECMWF Ensemble of Data Assimilations system: some effects of ensemble size and day-to-day variability, Q. J. Roy. Meteor. Soc., 137, 423–434, https://doi.org/10.1002/qj.756, 2011. a
Download
Short summary
Can multilevel Monte Carlo methods improve ensemble variational data assimilation without increasing its computational cost? By shifting part of the ensemble generation cost to coarser simulation grids, larger ensemble sizes become affordable. This gives smaller sampling errors without introducing any coarse-grid bias. Numerical experiments with a quasi-geostrophic model demonstrate the potential of the approach and highlight the challenges of operational implementation.
Share