Nonlin. Processes Geophys., 32, 167—-187, 2025
https://doi.org/10.5194/npg-32-167-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multilevel Monte Carlo methods for ensemble
variational data assimilation

Mayeul Destouches'->3, Paul Mycek!2, Selime Giirol!>, Anthony T. Weaver'?, Serge Gratton®*, and
Ehouarn Simon*

LCERFACS, Toulouse, France
2CECI, Université de Toulouse, CERFACS/CNRS/IRD, Toulouse, France
3Met Office, Exeter, United Kingdom
4INPT-IRIT, Toulouse, France

Correspondence: Mayeul Destouches (mayeul.destouches @umr-cnrm.{r)

Received: 20 November 2024 — Discussion started: 3 December 2024
Revised: 10 March 2025 — Accepted: 19 March 2025 — Published: 23 June 2025

Abstract. Ensemble variational data assimilation relies on ensembles of forecasts to estimate the background
error covariance matrix B. The ensemble can be provided by an ensemble of data assimilations (EDA), which
runs independent perturbed data assimilation and forecast steps. The accuracy of the ensemble estimator of B
is strongly limited by the small ensemble size that is needed to keep the EDA computationally affordable. Here
we investigate the potential of the multilevel Monte Carlo (MLMC) method, a type of multifidelity Monte Carlo
method, to improve the accuracy of the standard Monte Carlo estimator of B while keeping the computational
cost of ensemble generation comparable. MLMC exploits the availability of a range of discretization grids, thus
shifting part of the computational work from the original assimilation grid to coarser ones. MLMC differs from
the mere averaging of statistical estimators, as it ensures that no bias from the coarse-resolution grids is intro-
duced in the estimation. The implications for ensemble variational data assimilation systems based on EDAs are
discussed. Numerical experiments with a quasi-geostrophic model demonstrate the potential of the approach, as
MLMC yields more accurate background error covariances and reduced analysis error. The challenges involved
in cycling a multilevel variational data assimilation system are identified and discussed.

Copyright statement. The works published in this journal are
distributed under the Creative Commons Attribution 4.0 License.
This licence does not affect the Crown copyright work, which is re-
usable under the Open Government Licence (OGL). The Creative
Commons Attribution 4.0 License and the OGL are interoperable
and do not conflict with, reduce or limit each other. © Crown copy-
right 2024

1 Introduction

The covariance matrix of background errors plays a key role
in variational data assimilation applications in meteorology
and oceanography (Bannister, 2008a, b). Historically, these
covariance matrices were modelled with strong assumptions
of homogeneity and isotropy and with limited flow depen-
dence (e.g. by parameterizing covariances in terms of the

background state). Developments over the last 20 years have
enabled operational numerical weather prediction (NWP)
centres to incorporate information from an ensemble of fore-
casts into parameterized background error covariance mod-
els (e.g. Raynaud et al., 2009, and Bonavita et al., 2011,
for global atmospheric data assimilation; Brousseau et al.,
2012, for regional atmospheric data assimilation; Chrust et
al., 2025, for global ocean data assimilation). Moving away
from parameterized covariance models, Lorenc (2003) and
Buehner (2005) showed how a sample-based covariance ma-
trix estimated directly from an ensemble of forecasts could
be used in variational data assimilation. This method, in-
spired by the ensemble Kalman filter, consists of regularizing
the standard Monte Carlo (MC) estimator of the covariance
matrix by explicitly damping covariances at long separation
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distances where the signal-to-noise ratio is small because of
comparatively large sampling errors. This localized ensem-
ble representation of the background error covariance matrix
is used by many NWP centres, including the Met Office, the
UK’s national weather service (Clayton et al., 2013), Envi-
ronment and Climate Change Canada (ECCC; Buehner et
al., 2015; Caron et al., 2015), the National Centers for En-
vironmental Prediction (NCEP; Kleist and Ide, 2015), and
Météo-France (Montmerle et al., 2018).

Ensemble generation strategies can be broadly divided into
two classes, whether the ensemble members come from an
ensemble Kalman filter (or flavours thereof), as is done oper-
ationally at ECCC for instance (Buehner et al., 2015; Caron
et al., 2022), or from an ensemble of (independent) data as-
similations (EDA). We will focus on the latter in this pa-
per. EDAs are used operationally to initialize ensemble fore-
casts and to provide background error information at Météo-
France (Pereira and Berre, 2006), ECMWF (Bonavita et al.,
2015), and the Met Office (Inverarity et al., 2023). The ad-
vantages of an EDA include reduced maintenance cost (com-
pared to maintaining two different schemes for the ensemble
and deterministic systems), improved simulation of the errors
in the deterministic system, and its “embarrassingly parallel”
nature.

Although ensemble estimates from an EDA can substan-
tially improve the representation of background errors, this
comes at the price of an increased computational cost, as
a non-linear forecast and separate minimization (analysis)
have to be performed for each ensemble member. Some re-
search efforts have focused on reducing the cost of per-
forming an ensemble of minimizations by using block-
minimization methods (Mercier et al., 2019). A more typical
way of reducing the combined cost of the ensemble forecast
generation and assimilation steps is to use a cheaper data
assimilation algorithm and coarser resolution compared to
a deterministic or control forecast (Michel and Brousseau,
2021). The “Mean-Pert” method (Lorenc et al., 2017) gives
a theoretical basis to this approach and has been used opera-
tionally at the Met Office since December 2019 (Inverarity et
al., 2023). In this article, the focus is mostly on maintaining
an affordable ensemble generation cost.

In this paper, we explore a method to improve the es-
timation of background error covariances in a way that is
not so different from the dual-resolution strategy mentioned
above, i.e. by increasing the ensemble size without increas-
ing the cost of generating the ensemble Instead of generating
an ensemble on a single coarse grid, we generate a set of
ensembles on grids with different levels of coarsening. The
multilevel Monte Carlo (MLMC) framework ensures that no
bias is introduced in the resulting estimates. MLMC was
first introduced by Heinrich (2000) and popularized by Giles
(2008). A review is provided in Giles (2015). In practice, the
MLMC estimator is built as a base MC estimator on a coarse
grid but is iteratively refined by adding correction terms from
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the difference of pairs of MC estimators from finer and finer
grids.

The idea of applying MLMC methods to data assimilation
is not new. Several studies have examined MLMC in the con-
text of particle filters (e.g. Gregory et al., 2016; Jasra et al.,
2017) and ensemble Kalman filters (e.g. Hoel et al., 2016;
Chernov et al., 2021). However, they often focus on the es-
timation of a scalar quantity or on the asymptotic properties
in the limit of continuous space or time discretizations. Here,
we focus on the use of MLMC methods for variational data
assimilation. In this regard, the natural extension of ensemble
variational (EnVar) systems is to use an MLMC estimator of
the background error covariance matrix.

MLMC methods have also been used to estimate variances
and covariances. Multilevel estimation of the variance field
was analysed by Bierig and Chernov (2015) (but used as
early as 2010; see references therein). Mycek and de Lozzo
(2019) proposed a multilevel estimator for scalar covari-
ances, with a focus on the optimal allocation of members
across grids. In the context of the EnKF, a multilevel esti-
mator of the covariance matrix was proposed by Hoel et al.
(2016). Most interestingly, Maurais et al. (2023, 2025) have
recently proposed a multilevel estimator that can be used to
ensure positive-semi-definite covariance matrix estimates.

The main contribution of this paper is to explore the use
of MLMC-like methods for variational data assimilation,
which, to the best of our knowledge, has never been done be-
fore. In doing so, we impose constraints that are relevant for
data assimilation in operational applications. For instance,
we assume that the finest grid resolution of the data assim-
ilation is fixed so that only coarser grids can be added. As
such, we do not delve into asymptotic considerations in the
limit of infinitely many refined grids. As another example,
we discard algorithms whose cost does not scale linearly or
quasi-linearly with respect to the size of the state to estimate.
For instance, our proposed algorithms do not involve explicit
storage of the background error covariance matrix B or com-
puting its eigen-decomposition. This concern for operational
applications makes the spirit of this article similar to that of
Beiser et al. (2025), who investigated the practical details of
using MLMC with an EnKF in an oceanographic application.

The outline of the paper is as follows. We recall the prop-
erties of the standard single-level MC ensemble estimator of
B in Sect. 2, before explaining in Sect. 3 how they extend to
multilevel estimators. The setting for numerical experiments
is presented in Sect. 4. Results are presented and discussed
in Sect. 5 before the conclusion in Sect. 6.

2 The Monte Carlo estimator of B

This section recalls some statistical properties of the ensem-
ble background error covariances classically used in ensem-
ble variational data assimilation. The notations have been
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chosen to facilitate the extension to the multilevel setting in
the next section.

Let € : 2 — R? be a random vector representing stochas-
tic model inputs, where 2 is the sample space. For in-
stance, € could contain uncertainty information on initial
conditions, boundary conditions, and model parameters. Let
f :R?” — R” be a forecast model generating ensemble mem-
bers X : Q2 — R" from the stochastic inputs as X = foe,
where X follows the probability distribution of the back-
ground state, n is the dimension of the state space, p is the
dimension of the space of uncertain input parameters, and o
is the function composition operator. Our goal is to estimate
the covariance matrix of X, B :=Cov[X, X]. We assume
for the rest of the paper that all random vectors have finite
fourth-order moments and thus finite second-order moments.
Let £ := (€1, ..., €y) denote an ensemble of N independent
and identically distributed stochastic inputs, with N > 2. The
standard N-member unbiased MC estimator of B can be built
from the ensemble of N forecast members associated with

these inputs, f(€) :=(f(€1),..., f(en)) =(X1,..., XN).

~ - - ;

B=— Xi—X)(Xi—X 1
N—1 ;( ! )( l j ’ ey

where X := 1/NY_,; X; denotes the ensemble mean.

2.1 Sampling noise

The MC estimator B is built from random vectors, so it is it-
self arandom quantity. Each element E ; of the MC estimator
of B is an estimator of B;;. As for any statistical estimator,
we can define its mean square error (MSE), which can be
decomposed as a variance and a squared bias term:

MSE([B;;. Bi;] := E[(B;j - Bi;)’] 2
= V[By;]+ (E[B;; - B;])" 3)

This bias—variance decomposition is somewhat artificial
here since the MC estimator of the covariance is unbiased.
As a consequence, the MSE of the estimator reduces to its
variance:

MSE[Bi;, Bij] = V[B;;]- )

This variance is a measure of the amplitude of the sampling
noise affecting the MC estimator and is not to be mistaken
for the variance of X, which is the diagonal of B. Rather,
it is the variance of the covariance estimator, which can be
expressed as a function of ensemble size and the statistical
moments of X (see Mycek and de Lozzo, 2019, Eq. 11):

1 N-2 , 1

21— L@ _
V[B;]= v VWiijj N(N_1)Bif+ N(N —1)

BiiBjj, (5)

where M® is the tensor of fourth-order central moments of
Xs
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M, = EI(X; — EIX DX — E[X;])

x (X — E[XkD(X; — E[X;]]. (6)
Note that Eq. (5) is valid independently of the distribution of
the ensemble members X. We do not assume the members to

be normally distributed for instance. The MSE of the covari-

ance estimator behaves asymptotically as (Mff]) ;T Bl.zj) /N as
N — oo. The slow decay rate O(N~'/2) of the roor mean
square error (RMSE) is a well-known property of MC esti-
mators. In practice, this means that to reduce the sampling
noise by half for instance, the ensemble size needs to be in-

creased by a factor of 4.

2.2 Total MSE and total variance

A natural choice to define the total MSE of the full covari-
ance matrix estimator is to use the Frobenius norm ||A||12: =
Yo inzj' With this choice of norm, the total MSE is just
the sum of the matrix element MSEs, and a simple bias—
variance decomposition follows:

MSE[B,B] := E[|B - B|?] (7)

2|33 (@ -0 ®

i=1j=1

= 2": Xn:V[ﬁif] + (E[By; — Bij])* ©)

i=1j=1
= V[B]. (10)

The bias term vanishes in Eq. (9), and V denotes the total
variance, defined as the sum of the element variances:

V[B]:= ZZV[E,] (11)

—ZZ Tyw  N=2

T N NN =1) Y
N 1
N(N —1)

where we have used Eq. (5).

BiiBjji|, (12)

2.3 Impact of localization

In practice, the MC covariance matrix estimate is never used
as such. In data assimilation applications, the ensemble co-
variance matrix is regularized by localization (Hamill et al.,
2001; Lorenc, 2003), i.e.

B, =BOL, (13)

where the localization matrix L. € R"*" is a correlation ma-
trix, i.e. a symmetric positive-definite matrix with unit diago-
nal, and © denotes the Schur (element-wise) product. Local-
ization is designed to remove long-distance sampling noise,
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and doing so increases the rank of the covariance matrix esti-
mates. The localization matrix, which h§§ elements between
0 and 1, introduces bias in the estimator Bjy.. This additional
bias may be compensated for by an associated reduction of
the variance. For any element ij, we have

=E[Bi;Lij — Bij]
—E[B;j]|Lij — Bij = Bij(Lij— 1), (14
=V[By;Lij] = L} V[Bj;]- (15)

E[Eloc,ij — Bjj]

V[/B\loc,ij]

Meénétrier et al. (2015a, b) proposed a framework for optimal
localization based on minimizing the MSE of the localized
estimator of Bjoc.

In the next section, we focus on non-localized and unbi-
ased estimators of B. As a technical (though vital) tool, the
interaction with localization will be detailed later, along with
other technical considerations, in the numerical experiments
of Sect. 5.

3 The multilevel B

In this section, we focus on using MLMC techniques (Hein-
rich, 2000; Giles, 2008, 2015) to build a multilevel B in or-
der to reduce the total variance of the MC estimator without
introducing any additional bias. The MC estimator can be
seen as a specific case of a multilevel estimator with only one
level. In Sect. 3.1 we first introduce the multilevel estimation
of a covariance matrix. In Sect. 3.2 we derive the variance
of this estimator and show how it can be minimized by an
optimal allocation of the ensemble members on the different
fidelity levels. Finally, a weighted extension of the classical
multilevel estimator is introduced in Sect. 3.3.

3.1 Multilevel estimation of a covariance matrix

Contrary to simple MC estimators which are built from an
ensemble of simulations of equal fidelity, MLMC estimators
are built from a set of ensembles of simulations of different
fidelity. In the multilevel approach, we introduce a hierarchy
of models of increasing fidelities f1,..., fr, with L > 2 and
fL = f. We assume that the models are ordered from the
least (fidelity level £ = 1) to the most accurate (fidelity level
£ = L) and from the computationally cheapest (¢ = 1) to the
most computationally expensive (¢ = L). These models have
the same input and output spaces as f;i.e. f¢: R” — R". In
practice, fi,..., fL—1 is typically obtained by using interme-
diate coarser discretization grids. This implies that a prolon-
gation operator is required to ensure that the output of each
model is on the same fine grid in R”. The choice of interpo-
lation operators will be discussed further in Sect. 4 and has
been discussed in a similar context by Briant et al. (2023).
The varying fidelity can originate from sources other than
grid discretization, for instance from computations in sim-
ple or half precision, simplified dynamical cores, or surrogate
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Table 1. Example coupling structure for a three-level MLMC esti-
mator. Each row corresponds to a different coupling group.

Stochastic input ~ Fidelity = Ensemble sizes

set k level ¢

1 1 N

2 1,2 N @ each, 2N @) in total
3 2,3 N® each, 2N in total

models. Although this is not the focus of this article, note that
multilevel techniques exist that do not require the fidelity lev-
els to have a natural ordering by accuracy and computational
cost (see Sect. 3.3).

For each 1 <k < L, we define a set of stochastic inputs
with N® members in Q@ — RP?,

k
g0 ={e et ). (16)

There are thus Z,f: {N® stochastic inputs in total, all
independent and identically distributed. Technically, each

“stochastic input set” £* could be given as input to angr of
the simulators fy, thus yielding an output ensemble X
Fe(E¥). If the same stochastic input set £X) is given to sev-
eral simulators, several output ensembles are produced, all
of size N® and all with their own fidelity level ¢ but all
generated from the same stochastic inputs. As such, these en-
sembles would not be mutually independent, with one-to-one
correlations between members across fidelity levels. We refer
to such ensembles as a “stochastically coupled ensemble”.

To build an MLMC estimator, we generate several groups

of stochastically coupled ensembles, one group for each of
the L stochastic input sets. A base group is defined using the
lowest fidelity level only (a group with one output ensemble
only) and coupling groups are defined from pairs of succes-
sive fidelity levels (groups with two stochastically coupled
ensembles each).

Base group with one ensemble :

2V = fo(eM), e=1 17
Couphng group with stochastically coupled ensemble:
pair (X0, X)), b=k, € =k—1,2<k<L (18)

The subscripts here refer to the fidelity level ¢, while the su-
perscripts refer to the stochastlc input set k. The coupled en-
sembles ka)l and X ) are not independent as they use the
same stochastic 1nputs and are thus stochastically coupled.
Conversely, ensembles with different superscripts are inde-
pendent as they are generated from different stochastic input
sets. As an example, the coupling structure of an MLMC with
three fidelity levels 1s shown in Table 1.

Denoting by B ) the unbiased MC covariance estimator

built from ensemble Xék) , the MLMC covariance estimator
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is built from a base estimator on the lowest fidelity level, suc-
cessively corrected by correction terms:

L

L b

BV =B+ (B -B,). (19)
k=2

There are a few important points to note about this estima-
tor. First, building the ensembles requires N) integrations
of the high-fidelity model f; = f and N®® + N+ integra-
tions of f; for 1 <€ < L — 1. Compared to an MC estimator,
this means that some computational budget must be moved
from the high-fidelity level to the coarser ones to conserve the
same computational cost. In practice, the low-fidelity models
are much cheaper to run, which allows them to be run with
large ensembles even with a fraction of the total computa-
tional resources. Second, this estimator is unbiased, as the
expectations are not dependent on the stochastic input index
and cancel each other out in a telescopic fashion.

L
k=2
=B, + Z (Bx —By—1)
k=2
(where By := Cov[ f¢ (€), fe(e)]) (21)
=B; =B (22)

where we used the fact that although B(k 1) 7+ B(k)1 they
have the same expectation B;_1. Third, 1t is not obvious un-
der which conditions this multilevel estimator is more accu-
rate than the standard MC one. This is discussed in Sect. 3.2.
Finally, multilevel estimators are not range-preserving. If
random samples lie in a given interval, an MC estimate of
their mean will also lie in this interval, but an MLMC esti-
mate may lie outside the interval. This concept generalizes to
covariance matrix estimators, with multilevel estimates be-
ing symmetric matrices with no guarantee of positive semi-
definiteness. This is discussed further in Sect. 5.

3.2 Error reduction and optimal ensemble sizes

There are various ways to split a given computational budget
into the different coupling groups. How the computational
budget is allocated determines the respective ensemble sizes
N®_ which in turn determine the MSE of the multilevel co-
variance estimator. We will explain in this section how the
member allocation (i.e. choice of the ensemble sizes) can be
optimized to minimize the statistical error (sampling noise)
of the covariance matrix estimator. The approach we follow
here is similar to what can be found in the literature, for in-
stance in Mycek and de Lozzo (2019) for the multilevel es-
timation of a scalar covariance. The results in this section,
taken from Destouches et al. (2023), differ from previously
published results in two respects: (a) we extend the problem
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from the scalar multilevel covariance estimator to the multi-
level covariance matrix estimator, in a setting where the finest
level L is fixed, and (b) we ensure that the problem is kept
numerically feasible for high-dimensional systems.

3.2.1  Minimizing an upper bound of the multilevel MSE

First, let us compute the MSE of the covariance matrix esti-
mator. Since the multilevel covariance estimator is unbiased,
its total MSE is equal to its total variance. The mutual in-
dependence of correction terms allows us to write the total
variance as

V[BM] = v[B}"] +Zv B —B{" 1. (23)

As shown by Mycek and de Lozzo (2019, Eq. 2.31) for a
scalar covariance estimator, the scalar variance of each scalar
multilevel covariance estimator EML can be bounded by a
sum over the coupling groups k of terms inversely propor-
tional to N ) _ 1. By summing these terms over all covari-
ances BlML BML we see the same result holds for the toral
variance of the covariance matrix estimator:

ML Loyl
V[BM] < ZN(">—1 (24)

where V® represents constants independent of the ensem-
ble sizes. These constants can be expressed as functions of
central moments of fy(€). Introducing X := f¢(€) and Xy ;,
its ith element, and defining X¢ ; = 0 by convention for all i
values, we have, for k > 1,

VR = (\/M“ [Xii = Xi—1,i [MA[ X j + Xi—1,7]

l<z ]<n

+\/M4[Xk,,- —Xk—l,j]Mz‘[Xk![+X/<,1’,']>, (25)

where M* is the fourth-order central statistical moment:
M*u, v, x, y] := E[(u—E[u)v—E[])(x —E[x])(y —E[y])]
for scalar, real-valued random variables u, v, x, and y, and
M4[u] := M*[u, u, u, ul.

Although we can derive an exact expression of the total
variance (see Sect. 3.2.2 below), Eq. (24) is helpful to un-
derstand why the multilevel approach can be effective. In-
tuitively, the upper bound will be small if either the en-
semble sizes N are large or the constants V®) are small.
The first condition can be met for small k if the low-fidelity
simulations are substantially cheaper to run than the high-
fidelity ones, thus allowing large ensemble sizes for low-
fidelity ensembles. For higher-fidelity ensembles, the ensem-
ble sizes are necessarily smaller due to higher computational
cost. This can be compensated for by smaller V*) constants,
which can be related to small fourth-order moments of the
correction terms and therefore to strong correlations between
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stochastically coupled simulations. However, building com-
putationally cheaper low-fidelity models that are strongly
correlated with the highest-fidelity model can be technically
challenging.

3.2.2 Directly minimizing the multilevel MSE

The exact total variance can be computed by expanding
Eq. (23):

L
VB = Y {VIBE )Y (VB4 VB, )
1<i,j<n k=2
—2Cov[B,. BY, ,,-])}‘ (26)

All the terms in this expression can be expressed as func-
tions of the ensemble sizes N®) and central moments of X .
We can derive the following expression for the covariance
of scalar covariance estimators (Ménétrier et al., 2015a, their
Eq. 9):

k k
COV[BE l)/’ Bé/)lj]
M4[X4,i, Xg/,i, Xl,j’ XE’,j] — COV[Xg,i, X[J]COV[X@/J‘, Xg/yj]
N &)
COV[Xg’i, X(/’j]COV[X[’j, XK’,i]
NONE —1)
COV[XL,', Xg/’i]COV[Xg’j, Xg/’j]

NON® _1)

@7

For the case £ = ¢/, this simplifies to an expression for the
variance:

M4[Xg,,‘, X[,,', Xg,j, X[’j] — COV[Xg,i, Xg,j]z
N®
COV[XL,-, Xe,j]z +V[X[,,']V[Xg7j]
+ NON® — 1) :

VB =

(28)

Gathering Eqs. (26)—(28) gives a theoretical expression of
the total variance of the multilevel estimator as

L 40 p®
SMLT _ a
VB = ]; G NON® —1y’

(29)

for some deterministic scalar parameters a® and b(k), 1<
k < L, which are independent of the ensemble sizes N ®) and
given by
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a® = Z (M4[Xk,,’, Xi,i» Xk, j Xk,j]

1<i,j=n
— Cov[Xei, Xi ;]
+M4[Xk—1,i, Xi—1,i» Xi—1,j» Xi—1,7]
— Cov[Xi—1., Xk—l,j]z
- 2M4[Xk,ia Xi—1,is Xk, j» Xk—1,j ]

+2C0V[Xk,iv Xk,j]COV[Xk—L"’ Xk_l’j])’ G0
b0 = 3" (Cov[Xk,i,Xk,j]2
1<i,j=<n

+ V[ Xe V[ Xe ]+ Cov[Xe1i, Xeo1 ;]
+ V[ Xi—1.i V[ Xr-1,/]
— 2COV[Xk,,', Xk_l’j]COV[Xk’j, Xk—l,i]

—2Cov[Xx.i, Xi—1.:]Cov[ Xy ;, X,H,j]), 31)

where we define by convention X(; =0 for all i values.
These expressions involve double sums over the n elements
of Xy, i.e. over the space dimension. For operational systems
of typical size O(10°) — O(10°), these summations involve
O10'%) — 0(10'8) elements. Evaluating these summations
is computationally prohibitive. Fortunately, when estimating
the statistical moments in Eqgs. (27) and (28) using ensem-
ble estimates, sums can be rearranged to replace the double
sums over space by a single sum over space, at the expense
of a double sum over the ensemble members. More details on
this are given in Destouches et al. (2023, Appendix B). Note
that the standard ensemble estimators of a® and b are bi-
ased. These “standard estimators™ are obtained by replacing
the central moments in Egs. (30) and (31) with the associated
sample central moments about the average. The resulting es-
timators could be made unbiased by extending the approach
of Shivanand (2025), but we have preferred using the biased
versions in our numerical experiments for the sake of sim-
plicity.

Obtaining accurate ensemble estimates of fourth-order
moments in Eqgs. (27) and (28) could also be difficult with
small ensemble sizes. We do not expect this to be a problem
in practice, however, as the sampling noise in fourth-order
estimates is attenuated by the global space averaging on in-
dexes i and j.

Given that the total variance of the multilevel covariance
matrix estimator is explicitly derived in Eq. (29), the optimal
member allocation for a given computational budget n can
be determined by minimizing the total variance under a cost
constraint:
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(k) (k)
a b

min Z k k k

N®, 1<k<L N® = NONE 1)

subject to

L
Y o(Ce+Ca)NO=nand NO>2 (1<k<N), (32)
k=1

where Cy is the computational cost of generating one mem-
ber on fidelity level £, and Cop = 0 by convention. This is a
low-dimensional optimization problem, with two to five un-
knowns in practice, which can be solved numerically. The so-
lution of the problem gives ensemble sizes in floating points,
which can then be rounded to the closest integers, for in-
stance. Only once this problem has been solved can the opti-
mum variance be compared to the variance of the same cost
MC estimator, obtained by choosing N as /Cy, in Eq. (12).

3.3 Weighted multilevel estimation

Schaden and Ullmann (2020) present an important gener-
alization of the MLMC framework. In their paper, the au-
thors introduce the multilevel best linear unbiased estimator
(MLBLUE), a unifying framework that generalizes and out-
performs the MLMC estimator as presented here. Although
their work focuses on the estimation of a scalar expectation,
it can be extended to the estimation of a covariance matrix,
as shown by Destouches et al. (2023).

In an MLMC framework, the fidelity levels are ordered
from low to high fidelity, and successive fidelity levels are
paired into a common coupling group receiving the same
stochastic inputs. Each coupling group forms a correction
term in Eq. (19). The MLBLUE does not make such assump-
tions: the fidelity levels do not need to be hierarchized, and a
coupling group can include any number of levels. This is rel-
evant, for example, when using non-hierarchized surrogate
models (e.g. El Amri et al., 2023). As a consequence, the cor-
rection terms are no longer restricted to differences of MC
estimators but can be any weighted average of them, with
coupling weights differing from the MLMC weights (1, —1).

In the present paper, we do have hierarchized fidelity lev-
els. As such, we choose to consider the MLBLUE only in
the context of simpler MLMC-like coupling structures. Two
main reasons support this choice.

1. For a given set of L fidelity levels, the MLMC structure
ensures that the number (2L — 1) of different ensembles
is limited, while it could have been larger for more com-
plex structures. In a context where the total computa-
tional budget is expected to be small (typically around
10 fine-grid simulations), keeping the number of ensem-
bles small ensures each ensemble can be populated with
a reasonable number of members.

2. Whichever coupling structure is chosen, it has to be kept
unchanged for all data assimilation cycles. Since the op-
timal MLBLUE coupling structure is highly dependent

https://doi.org/10.5194/npg-32-167-2025

173

on the problem under consideration, a complex coupling
structure that is optimal for one cycle may not be opti-
mal for the other cycles. This motivates the choice of a
simple and robust coupling structure.

Within this MLMC-like structure, the MLBLUE still pro-
vides an improvement over MLMC due to the introduction of
coupling weights. This yields a weighted MLMC, as already
proposed by Sukys et al. (2017). For a covariance matrix, a
simplified weighted estimator with scalar weights reads

BYML _ ﬁ(l)B(l)+Z<ﬁ(k)§(k)+ﬂ(k) ﬁ(k) ) (33)
k=2

where the ,Bék) represents scalar weights, with ﬂ(LL) =1 and

ﬂ(kH) ﬁ(k) (1 <k <L—1) to ensure the estimator is
unbiased. The variance of this estimator now depends on
both the ensemble sizes N® and the weights ,8 ' However
the optimal weights can be derived for arbitrary ensemble
sizes so that the variance minimization problem can be ex-
pressed in terms of ensemble sizes only (Schaden and Ull-
mann, 2020).

For the simple weighted multilevel covariance matrix es-
timator proposed above, the ensemble member allocation
problem is similar to the MLMC one (Destouches et al.,
2023, translating their Eq. 124 to our notations):

(k)
min Z(ﬂ(k)* ,3,(!‘)* )C(k) (?Ek_)j‘ ) subject to
I

N®, 1<k<Nk
L
Z (Co+Coo)NP =n and N® >2 (1 <k <N), (34)

where

— C® is the matrix of spatially averaged covariances be-
tween MC covariance estimators at successive fidelity

levels,
C(k) —
Z ( Bk 11,] COV[§k—1,ij,§k,ij] )
21<zJ<n COV[Bk 1,],Bk ,J] V[Bk,ij] '
l<k<L; (35)

— the quantities indexed by k = 0 are zero by convention;

ﬂ(k) represents the optimal weights associated with the
ensemble sizes N®. Their expression is given in Ap-
pendix A.

In the minimization problem Eq. (34), the ensemble sizes
N® appear explicitly in the constraint, but they are only im-
plicitly present in the optimal weights ﬂ ) (see Appendix A)
and in the inter-level covariances (see Eq. 27). The summed
inter-level covariance matrices C*) have to be estimated in
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a pre-processing step. This estimation can be made with a
cost that is linear in n (see Appendix B of Destouches et
al., 2023). Since there is almost no cost overhead in us-
ing weighted MLMC over MLMC, the weighted MLMC
(WMLMC hereafter) should always be preferred in practice.

4 Experimental setting

4.1 Presentation of the idealized model

The performance of the covariance estimators is tested
with a two-dimensional two-layer quasi-geostrophic chan-
nel model. This simplified representation of the mid-latitude
dynamics of the atmosphere is based on the conservation of
potential vorticity in two well-mixed layers with uniform po-
tential temperature on a § plane (Fandry and Leslie, 1984,
their Sect. 2a). In this setting, the atmosphere can be repre-
sented either by the stream function field ¢(x, y, z,t) or by
the potential vorticity field g(x, y, z, t).

Similar implementations as the one chosen in this arti-
cle have been used at ECMWF by Fisher and Giirol (2017),
Laloyaux et al. (2020), Farchi et al. (2021), and Farchi et al.
(2023) to explore the impact of 4DVar research before tri-
alling it in operational systems. In this article, we use the
model implemented in the OOPS (Object-Oriented Predic-
tion System) repository of the Joint Center for Satellite Data
Assimilation (JCSDA). It is derived from the implementa-
tion presented in Fisher and Giirol (2017) but uses dimen-
sional variables instead of non-dimensional variables. The
only other differences are the domain dimensions, grid sizes,
and time step which have been adapted to accommodate eas-
ier addition of coarser grids.

The chosen domain is rectangular, with periodic bound-
ary conditions on the east-—west direction. The zonal di-
mension is chosen to be the latitude circle length at 43°N
(Ly =29277km), and the meridional dimension is chosen
to ensure a 1:3 ratio between the width and the length of
the domain (L, = 9759 km). The domain is discretized on a
ny xny = 80x240 grid, with data points defined at the nodes
of the grid. Vertically, the two model layers have depths of
4km (bottom layer) and 6 km (top layer), as in Fisher and
Giirol (2017).

The northward winds are assumed to be zero on the north
and south boundaries. This implies that the stream func-
tion has uniform values on these boundaries. The Dirichlet
boundary conditions on the stream function are chosen to
impose an average eastward wind speed of 10ms~! in the
lower layer and 40 ms~! in the upper layer. A potential vor-
ticity forcing term is added to the bottom-layer equations,
corresponding to a Gaussian heating or orography source of
e-folding radius 1000 km and of amplitude 5x 107> s~ !, cen-
tred on a grid point located at one-quarter of the domain in
the eastward direction and three-quarters of the domain in the
northward direction.
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The time integration is based on a semi-Lagrangian up-
stream scheme to advect potential vorticity. Each time step
includes a conversion from stream function to potential vor-
ticity and horizontal winds, an advection of potential vortic-
ity by the winds, and a conversion of the advected potential
vorticity into stream function. This last step requires solv-
ing a Poisson equation. Preliminary numerical experiments
showed that the accuracy of the numerical integration did not
improve substantially for time steps smaller than 5 min. This
5 min time stepping has thus been retained.

4.2 Reference experiments

The experiments presented here are all based on pure
3DEnVar (three-dimensional ensemble variational) analysis
schemes, i.e. 3DVar schemes that rely on a purely ensemble-
based background error covariance matrix, with no static
(parametric) covariance term. Performance is measured from
the analysis RMSE with respect to the truth. We focus on a
single analysis in this article and do not investigate the im-
pact on a cycled forecast analysis system.

Hereafter, all computations (performance metrics, mini-
mizations, field perturbations, interpolations) use the stream
function representation of the model, consistently with the
aforementioned ECMWEF studies. Since stream function is a
horizontally integrated quantity compared to potential vortic-
ity, it effectively transforms positioning errors into amplitude
errors and is thus better suited to Gaussian-based variational
assimilation and to root mean square performance metrics.
The stream function also offers a representation of the sys-
tem state with larger length scales than potential vorticity and
is therefore better suited to spatial interpolation.

The truth run is initialized by first integrating the model
over 60 d to reach a permanent regime. From this initial 60 d
forecast, the truth run is integrated forward for an additional
12 h, from time ¢t =0 to time # = 12h. A background state
is generated by adding a perturbation field to the initial true
state at + =0, as schematized in Fig. la. This perturbation
field is sampled from a normal distribution N (0, A) with
zero mean and covariance matrix A, which is defined as fol-
lows.

Forl<i,j<n,

2 R
Aisz(yi)U(yj)eXp(_(xl X))+ (yi yj))

2
242
(zi —2;)?
X eXp (-ng . (36)
ForO<y<L,,
L., —
o(y) = omin (1,%,%), (37)

where x;, y;, and z; are the three-dimensional spatial coordi-
nates of point i. This Gaussian spatial covariance model has
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Figure 1. Experimental setting: (a) truth run and background trajectory, (b) generation of three ensemble members from the background
trajectory, and (c) generation of a pair of coupled ensemble members on fidelity levels ¢ and £ — 1, with 2 < ¢ < L, based on a given
stochastic input €;. M}ZZh denotes a 12h integration by the forecast model discretized on grid £. Perturbations €; are independent and
identically distributed, drawn from a zero-mean Gaussian distribution with covariance matrix A.

length scales of d, = 1000 km horizontally and d; = 6km
vertically and a standard deviation o = 6 x 10°m?s~!. In
practice, the second exponential decay term in A;;, associ-
ated with the vertical length scale d, = 6km, is either 1 if
zi = z;j orexp(52/(2x6%)) ~ 0.71 if |z;—z ;| = 5 km (the dis-
tance between the centres of each vertical model layer). For
consistency with the unperturbed north and south boundary
conditions, the standard deviations of the covariance model
decay linearly to zero within dp = 300 km of the north and
south boundaries. This affects the two rows of grid points in
the vicinity of each boundary. A simplified ensemble genera-
tion scheme is devised by adding similar perturbations to the
already perturbed background state at + = 0 and integrating
forward in time for 12h (Fig. 1b). The resulting ensemble
is Gaussian-distributed at + = 0 and weakly non-Gaussian at
t = 12 h due to the non-linear model integrations. The assim-
ilation step is performed at r = 12 h.

In addition to the multilevel estimators (MLMC and
wMLMC), two reference B matrices are computed at the
analysis time: an MC estimator with 20 members (referred
to as MC) and a reference MC estimator with 10* members
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(referred to as 10k MC). The 20-member MC estimator is our
baseline, with 20 fine-grid members being the target budget
we can afford. The 10k MC estimator will be used as an es-
timation of the true covariances.

Details on the analysis settings, including on covariance
localization, will be given in Sect. 5.

4.3 Building a hierarchy of low-fidelity models

In order to improve upon the MC estimation of background
error covariances, we need to introduce a hierarchy of low-
fidelity models. Here, this hierarchy is provided by coars-
ening the horizontal model grid and time resolution over the
12 h integration period. Details on the hierarchy of discretiza-
tions are given in Table 2. A spatial coarsening ratio of 2 is
used between each fidelity level so that grid points on coarse
grids are a subset of the grid points on finer grids. For fidelity
level £ (1 <€ <4) the grid points are positioned at

{Xi(e) =i-he(0), 0=i=nct)—1 (38)

VO =i-hy(@), 1<i<ny@-1,
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where the grid cell sizes are defined as /1, (£) = L, /n(¢) and
hy(€) = Ly/ny(£). In practice, there is a 1 : 3 ratio between
ny and ny and between L, and Ly so that hy = h, for all
fidelity levels. Note that the equations in Eq. (38) are also
valid for £ = 4, i.e. for the fine discretization introduced in
Sect. 4.1.

For each low-resolution grid, independent experiments
have been run to choose an integration time step Az¢(£). This
time step was chosen as the largest time step that kept the
time discretization error significantly smaller than the space
discretization error. The time step lengths Af(€) are given in
Table 2, alongside the discretization grids.

As the respective sizes of the inputs and outputs of the
models must be identical across fidelity levels, bicubic inter-
polation operators are used to define restriction and prolonga-
tion between the fine grid (fidelity level 4) and coarser grids
(operators Py _,, and P,_,; in Fig. 1c). Since the stencil of
this interpolation is of size 4 by 4, an additional row of data
is needed at the north and south of the domain to perform
the interpolation. These rows are added before the bicubic
interpolation by linear extrapolation. Using a higher-order
interpolation than the simple bilinear interpolation ensures
the interpolated fields are smoothed, thus damping (at least
partially) spurious high frequencies that can contaminate the
analysis, as illustrated by Briant et al. (2023).

To compare the cost of running a 20-member ensemble on
the fine grid with a multilevel ensemble on all grids, we need
to quantify the cost of generating an ensemble member on
each grid. In practice, the wall-clock time of running a quasi-
geostrophic forecast on the two coarsest grids is almost iden-
tical. This shows that the computational cost is not dominated
by the number of grid points at these coarse (and unrealistic)
resolutions. To alleviate this, we chose the more realistic and
favourable cost model where the computational cost scales as
the number of grid points times the number of time steps over
the integration period. This theoretical computational cost of
running a 12 h forecast on each grid is given in Table 2.

In this experimental setting, the stochastic coupling ex-
ploited by the multilevel approach is based on ensembles on
two fidelity levels using the same set of initial conditions.
The coupling is strongest before the model integration (al-
most perfect correlation, up to interpolation errors) and de-
cays with increasing forecast lead time. An illustration of a
coupled ensemble across all four fidelity levels is shown in
Fig. 2. The vorticity fields are shown here, as they make small
details more visible to the eye. All ensemble members are de-
fined on the fine grid, even if they have been computed on a
coarser grid, since the low-fidelity models include the restric-
tion and prolongation operators. For each fidelity level, a pair
of ensemble members is shown. The difference between the
two ensemble members on the fine grid (£ = 4) gives an esti-
mate of the ensemble spread. The associated coupled mem-
bers on the next coarsest grid (¢ = 3) show some correlations
with the fine-grid simulations, as evidenced for instance by
the position of the vortices. Less signal is preserved for the
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next coarsest grids. Note that when building a multilevel es-
timator, coupled simulations are built only for adjacent fi-
delity levels. Coupled members across four different levels
would never be used, except to compute statistics as an of-
fline pre-processing step. In this four-level setting, only the
correlations between levels 4 and 3, 3 and 2, or 2 and 1 are
of importance.

The vertical and horizontal lines visible on grids £ = 1 and
£ = 2 reveal discontinuities in the potential vorticity fields,
i.e. in the second-order spatial derivatives of the stream func-
tion field. This is consistent with the bicubic interpolation not
guaranteeing the continuity of spatial derivatives.

5 Numerical results

This section is divided into four parts. In a pre-processing
stage, we first use a multilevel ensemble coupled across all
levels to estimate the optimal ensemble sizes in each cou-
pling group. Optimality is defined here in terms of the ac-
curacy of the covariance estimator. Building on this optimal
allocation, we then verify that the associated multilevel co-
variance estimator is indeed more accurate than its MC coun-
terpart. Before introducing this multilevel covariance estima-
tor into a variational analysis scheme, we discuss the lack
of positive semi-definiteness of the covariance estimates and
how this could be circumvented. We then assess the impact
of using a multilevel covariance matrix B on one analysis.

5.1 Optimal member allocation

The optimal member allocation is computed from a set of
ensembles stochastically coupled across all levels. We used
100 coupled members for this estimation. This value is not
unrealistic, as this can typically be computed offline.

From this coupled ensemble, we estimate summed inter-
level covariances of MC covariance estimators, as described
in Appendix B of Destouches et al. (2023). Using these statis-
tics, we can evaluate the total variance of a multilevel co-
variance estimator and minimize it under a cost constraint
(Eq. 32 for MLMC, Eq. 34 for wMLMC). Due to the spa-
tial averaging, the sampling noise of this estimation is much
smaller than the sampling noises we try to minimize. Here,
we make the ensemble generation cost equal to that of a 20-
member fine-grid MC estimator. We first solve the problem
on real numbers using sequential least-square programming
and then round the solution to the nearest integer allocations.
As this may result in a computational budget slightly differ-
ent than the target cost of 20 ensemble members, we fine-tune
the allocation by removing or adding members to ensure we
stay below the target budget while having as many ensemble
members as possible on each coupling group. This fine tun-
ing is done automatically, from the most expensive group to
the cheapest one.

The optimal ensemble sizes and the associated generation
costs are shown in Fig. 3. The member allocation is similar
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Table 2. Space and time discretizations for the low-fidelity models. Fidelity level 1 refers to the lowest fidelity (coarsest grid), while fidelity
level 4 refers to the highest fidelity (original model grid). The degrees of freedom represent the dimension of the state space, i.e. the number
of free grid parameters ny (£) X (ny(£) — 1) x 2. The normalized integration cost is given as a fraction of the cost of a fine-grid run.

Fidelity level £ nx(¢) ny(€) At(£) (inmin) Degrees of freedom Normalized integration cost
1 30 10 40 540 0.00178
2 60 20 20 2280 0.01532
3 120 40 10 9360 0.12342
4 240 80 5 37920 1.00000
Grid ¢ =4 Grid ¢ =3

Y —
—

—0.0008 —0.0006

Potential vorticity in s~

—0.0004

—0.0002
1

0.0000

Figure 2. Two ensemble members, f4(€;) and f4(ep), generated with the fine-resolution simulator f; and associated coupled members
fe(€1,2) at coarser resolutions. The vorticity field of the bottom model layer is shown here.

for MLMC and wMLMC. More than half of the computa-
tional resources are dedicated to running a 10-member cou-
pled ensemble on the finest coupling group: 10 members on
the fine grid £ =4 and 10 coupled members on grid £ = 3.
The ensemble sizes increase as the associated generation cost
decreases, until the coarser coupling group, where hundreds
of ensemble members can be run for the cost of a single fine-
grid member.

The total variance of the covariance estimator is shown in
Fig. 4. The total variance is approximately 3 times smaller for
the wMLMC estimator (the exact ratio being 0.337). To reach

https://doi.org/10.5194/npg-32-167-2025

such a low variance, the single-level MC estimator would
have required 60 ensemble members instead of 20.

The weights of the wMLMC associated with this opti-
mal member allocation are, from the coarsest to the finest
level, as follows: g\ = —g? =0.71, g% = - = 0.79,
B = - = 0.88, and A" = 1. The benefit of WMLMC
over MLMC is only marginal here, increasing the gain from
63 % to 66 % variance reduction. This could have been differ-
ent under less favourable circumstances. For instance, dou-
bling the forecast integration time to 24 h instead of 12h
would weaken the stochastic coupling and produce an op-
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Figure 3. Allocation of members in different ensemble groups for
different ensemble estimators: MC, MLMC, and wMLMC. The
height of each bar is proportional to the computational cost of gener-
ating the corresponding coupled ensemble. The number of members
in each coupled ensemble is reported on each bar.
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Figure 4. Theoretical estimate of the total variance of the covari-
ance matrix estimators introduced in Fig. 3, normalized by the vari-
ance of the MC estimator. The total variances are estimated from
Eq. (12) for MC, Eq. (29) for MLMC, and the function to minimize
in Eq. (34) for wWMLMC.

timal variance reduction of 38 % for MLMC and 52 % for
wMLMC, i.e. a 14-point gain by adding optimal weights to
each level. Only wMLMC is considered in the rest of this
section.

To check that this variance reduction was not specific to
a given dynamical situation, we reproduced the experiment
for four other starting dates, starting 10, 20, 30 and 40d af-
ter the one we have just detailed. The results were similar,
with MLMC variance reductions ranging from 63 % to 69 %
and wMLMC variance reductions ranging from 66 % to 72 %
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across the 5 d. The following results, presented in Figs. 5-10,
have been obtained with the first of these 5 d. No attempt has
been made to reproduce them on the 4 other days.

Note that there was no guarantee that the multilevel es-
timator would perform better than the single-level estima-
tor here. A weaker inter-level coupling, or a less favourable
cost ratio, could have led to similar or even degraded per-
formance. A first set of experiments (not shown) actually
yielded a smaller improvement. We tracked it down to the
stochastic coupling being too weak for small length scales,
as discussed in Briant et al. (2023). Moving from bilinear to
bicubic interpolation operators solved the issue, as a bicubic
interpolation acts as a smoother, removing part of the unde-
sirable fine-scale signal while interpolating to a coarser grid.

Note that the member allocation problem can also be gen-
eralized to the problem of selecting a subset of fidelity levels,
as using all available levels may not be the optimal solution.
In practice, we solved the member allocation problem mul-
tiple times for all possible subsets of levels that include the
finest one. The best theoretical variance was obtained with
these four levels. Adding yet another coarser grid only de-
graded the accuracy of the estimator.

5.2 Empirical variance reduction

This reduction in variance is measured as a global average.
To see how this translates into local variance reductions and
to validate the theoretical computations, we explicitly build
200 realizations of a multilevel covariance estimator and
apply them to a Dirac impulse. This has the effect of ex-
tracting a column of the covariance matrix estimator. Each
one of these 200 realizations uses a different set of coupled
ensembles with a total of 603 members per realization (as
603 =243+2x 12542 %4542 % 10; see Fig. 3). From these
200 realizations, we compute an estimate of the statistical ex-
pectation and MSE of the estimator. These estimates can be
compared to estimates of the expectation and MSE of the
20-member MC estimator, keeping in mind that both estima-
tors have the same ensemble generation cost by construction
(see Sect. 5.1 and Fig. 3). The latter estimates are also based
on 200 realizations of the MC covariance estimator, with 20
members per realization.

These estimates are shown in Figs. 5 and 6. For the ex-
pectation of the covariance column, we also show the “true”
expectation, estimated from a 10*-member MC estimator.
Given that the typical values of stream function fields are
of the order of 10’ m?s~!, the typical covariances are of
the order of 10'% m* s~2, and their MSEs are of the order
of 1028 m8s~*. These large values do not affect the numeri-
cal accuracy of the sample estimates shown here, since these
estimates were obtained by adding or subtracting values with
a similar order of magnitude only.

As expected, the empirical expectations all look very sim-
ilar; no bias is visible in the MC estimator or in the MLMC
one. The MSE (or equivalently the variance, in this unbiased
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Figure 5. Statistical expectation of various estimators of a column of the covariance matrix: true expectation estimated from the 10k MC
experiment (a), MC estimator with 20 members (b), and wMLMC estimator with same computational budget as a 20-member MC (c). The
horizontal and vertical lines indicate the position of the point with respect to which covariances are computed. Only the bottom model layer

is shown.

context) has a smaller amplitude for most grid points when
compared to the MC estimator. Some minor degradation can
be seen close to the northern and southern boundaries. These
degradations are likely due to the forced linear decay of the
perturbations within 300 km of the north and south bound-
aries. This can provoke large gradients close to the bound-
aries, which translate into large values of potential vorticity
locally generating high-frequency features. These fine-scale
details cannot be accurately captured on the coarse grids,
hence the lack of coupling and bad performance in these ar-
eas.

For better visualization, a cross-section of the covariance
estimate is shown in Fig. 7. The smaller amplitude of the
spread around the true value is obvious for the weighted mul-
tilevel estimator. It is consistent with the global factor of 1/3
computed in the previous section, as a ratio of 0.337 in vari-
ance corresponds to a ratio of 4/0.337 & 0.58 in standard de-
viation, which is roughly what is seen in the figure.
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5.3 From a covariance estimator to B

Before using the MLMC covariance estimator in an analysis
scheme, we need to address two questions: how to localize it
and how to deal with negative eigenvalues.

5.3.1 Localization of a multilevel ensemble estimator

Though more accurate, a multilevel ensemble B estimate is
still rank-deficient and still needs some regularization before
being used in a variational analysis scheme. To preserve the
unbiasedness property of the MLMC B estimator (compared
to the expectation of its localized MC counterpart), we could
apply a single common localization to the final covariance
estimator. However, in operational ensemble variational data
assimilation, the Schur products are never computed explic-
itly. To avoid storing the full covariance matrix, it has been
shown that covariance operators of the form XXT © L can be
computed through a process that only requires storing X (see
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Figure 6. Similar to Fig. 5 for the mean square error. (a) MC estimator with 20 members. (b) WMLMC estimator with the same computational

budget. (c¢) Logarithm of the ratio of MC MSEs over wMLMC MSEs.

Appendix B of Buehner, 2005). Since such a decomposition
XXT does not exist for the MLMC-estimated B, a localized
version of it can only be built by applying localization to each
MC estimator in the MLMC telescopic sum:

L
B =B oL+ (8B oL+ A0 B oL). (39)
k=2

As the cost of applying localization to a covariance ma-
trix scales with the grid size and with the ensemble size
in practice (e.g. Appendix B of Buehner, 2005), localizing
some terms like the base term B(ll) with hundreds of mem-
bers could become prohibitively expensive if localization is
performed on the fine grid. An alternative is to perform local-
ization on the coarse grid, which is cheaper, and then apply
the prolongation operators on the localized increments. De-

noting ﬁék) = (P LX?‘)) (Pe— Lng))T, we have

(P2 X)) (P X)) O Ly
~P (XX OL)PL,. (o)
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where a subscript has been added to the localization matri-
ces to indicate on which grid the localization is performed.
The two strategies should yield reasonably close results, es-
pecially when the localization length scales are large com-
pared to the largest grid spacings involved. In this article, the
small size of the problem under consideration allowed us to
perform localization on the fine grid for all these terms, de-
spite the large ensemble sizes involved.

When comparing the costs of MLMC and MC estima-
tors, it should be noted that having comparable ensemble
generation costs does not necessarily guarantee comparable
memory storage requirements or comparable costs of apply-
ing a (localized) matrix-vector product. Instead of imposing
a constraint on the ensemble generation cost in Eq. (34), it
would also be possible to impose a constraint on the memory
storage requirements or on the cost of performing a matrix-
vector product with localization. If the cost models of these
three aspects evolve differently as a function of the fidelity
level ¢, choosing a different constraint in the member allo-
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where o is the standard deviation of the estimators.

cation problem would yield different optimal ensemble sizes
and thus different estimator accuracies.

Localizing an ensemble covariance estimator makes it bi-
ased, be it an MC or a wMLMC estimator. Using the same
localization as the MC estimator for all wMLMC terms, as
proposed in Eqs. (39) and (40), yields a multilevel estima-
tor with the same bias as the localized MC estimator. Here,
we rather choose to use different localization parameters for
the different terms of the wMLMC-estimated B, even though
the resulting sum no longer has telescopic expectations (i.e.
the terms no longer average out to zero in expectation). To
keep localization tuning feasible, we propose using two sets
of localization parameters only: one for the base term and
one for the correction terms. This is based on the fact that the
base terms has more members and therefore may only need a
weaker localization. In addition, the specific nature of correc-
tion terms may be better captured by a dedicated localization.
The optimal localization parameters chosen for the wMLMC
and MC estimators will be described in Sect. 5.4.

5.3.2 Negative eigenvalues of a multilevel covariance
estimator

Another aspect to consider carefully is the lack of positive
semi-definiteness of the (weighted) MLMC covariance es-

https://doi.org/10.5194/npg-32-167-2025

timator. The (weighted) MLMC estimator is not positive-
definite by construction due to the presence of negative terms
in the correction terms. There is no obvious way to constrain
this. As long as negative terms are involved, there will be a
chance that some realizations of the estimators have nega-
tive eigenvalues. This problem is well-known in multilevel
data assimilation, the usual solution being to truncate the
spectrum to remove negative eigenvalues, as in Hoel et al.
(2016). This is equivalent to projecting the symmetric matrix
onto the space of symmetric positive-semi-definite matrices,
as explained by Higham (2002). More recently, interesting
work focused on building a multilevel estimator of a covari-
ance matrix that would be positive by construction (Maurais
et al., 2023, 2025). As this involves computing costly matrix
logarithms and exponentials, the feasibility of this approach
for operational data assimilation in high dimensions remains
to be demonstrated.

In our case, we do observe negative eigenvalues in
wMLMC estimates, as shown in the spectra in Fig. 8. These
spectra were obtained for a single wMLMC estimate with
and without localization, a standard MC estimate with and
without localization, and the reference B estimated with 10*
members (with no localization). The spectra are obtained via
arandomized eigenvalue decomposition using 2020 samples,
as described in Algorithm 1 of Saibaba et al. (2016).

Nonlin. Processes Geophys., 32, 167—-187, 2025
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We first note that the standard MC and wMLMC estimates
are both rank-deficient, with ranks 19 and 596, respectively,
as evidenced by the zero eigenvalues from indexes 20 and
597. For the unlocalized wMLMC-estimated B, the first neg-
ative eigenvalue appears at index 8, with an amplitude of
0.11 times the first (positive) eigenvalue. Many others follow,
to the extent that the full spectrum includes 30 % negative
eigenvalues. This is clearly not negligible and could cause
convergence issues during the minimization of the data as-
similation cost function. The situation improves after local-
ization has been applied, with the first negative eigenvalue
appearing at index 61 in the spectrum, with amplitude 0.03
times the first (positive) eigenvalue. The ratio of negative
eigenvalues is also decreased from 30 % to 4 %. Although
localization helps, it does not fully solve the problem.

5.3.3 Handling negative eigenvalues

We now explore various possible practical remedies to treat
the presence of negative eigenvalues. The first solution, al-
ready mentioned, involves truncating the spectrum to remove
negative eigenvalues. This implies performing an eigen-
decomposition of the covariance matrix and rebuilding it
without the eigenvectors associated with negative eigenval-
ues. This decomposition can be done before the critical path
of an operational data assimilation suite, i.e. before the op-
erationally time-constrained interval between the reception
of the observations to assimilate and the delivery of the as-
sociated analysis to the subsequent forecast. Based on the
fact that an unlocalized wMLMC-estimated B has low rank,
the numerical cost of the eigen-decomposition could be kept
reasonable. For instance, relying on a randomization method,
we would only have to apply as many matrix-vector products
as the rank of the matrix, and this could be done in parallel.

Nonlin. Processes Geophys., 32, 167—-187, 2025

In our case, an upper bound of this rank is known beforehand
from the number of members used to build the estimate. For
instance, for the wMLMC-estimated B above, the rank is at
most (ND—1)4+2(N® —1)4+2(ND —1)4+2(N® —1) = 596,
which is small compared to the size of the matrix (37920
here; see Table 2). However, after removal of negative eigen-
values, there is still a large number of eigenvectors remain-
ing (419 in this case). Contrary to the raw MLMC case, these
vectors are now stored on the finest grid, and we are back
to the problem of applying localization to a 419-member
ensemble on a fine grid. Compared to the original problem
of applying localization to a 20-member ensemble, the cost
has prohibitively increased. We are thus led to conclude that
while randomization approaches may be of interest for of-
fline diagnostics, they are not a viable solution to the negative
eigenvalue problem, unless we allow the cost of applying B
to increase significantly compared to the cost of applying a
standard localized ensemble B.

A second solution would be to rely on localization and
hybridization. As already mentioned, localization has no
theoretical reason to make the matrix positive-semi-definite
(PSD), although it helps reduce the amplitude and numbers
of negative eigenvalues in our case. Hybridization is more
promising for this purpose, however. By defining the co-
variance matrix as a weighted average of an ensemble B
and a parametric B, hybridization can possibly restore pos-
itive semi-definiteness in the covariance estimate. Given the
relatively small amplitude of the negative eigenvalues after
localization, we can reasonably assume that hybridization
could remove most if not all of the negative eigenvalues,
even with a small weight for the parametric B. In another
context, Higham et al. (2016) proposed an algorithm to esti-
mate the smallest hybrid weight that restores positive semi-
definiteness. Whether this is applicable to high-dimensional
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(but low-rank) problems, and whether this could be done
without giving too much weight to the parametric static B,
is still to be explored.

A last option, which could be combined with the previous
one, would be to use a possibly non-PSD matrix in the min-
imization algorithms and adapt the algorithms to deal with
these negative eigenvalues. We first remark that using a B-
preconditioned conjugate gradient minimization algorithm
(Derber and Rosati, 1989) dispenses with the need to de-
fine a UUT decomposition of the background error covari-
ance matrix. As a first crude solution to deal with these neg-
ative eigenvalues, we propose using a slightly modified B-
preconditioned conjugate gradient algorithm.

This minimization algorithm was originally designed for
use with a PSD B matrix. Here, we propose using the non-
PSD B as such, but with two additional early stopping cri-
teria. At each iteration of the minimization algorithm (Algo-
rithm 2 in Giirol et al., 2014), two intermediate scalar values
(inner products) are monitored. The first one is the curvature
of the Hessian of the (non-preconditioned) system along the
descent direction. The second one is the B norm of the resid-
ual r of the preconditioned system, i.e. r"Br. In the standard
case with a PSD B, both quantities are positive. With a mul-
tilevel B having negative eigenvalues, the “B norm” is no
longer a norm, and either or both quantities can give negative
values if the descent direction or the residual is pointing to
directions associated with negative eigenvalues of B. When
this happens, the algorithm is exploring directions of control
space where the estimate of B is clearly poor, which justifies
early stopping. In practice, these checks can be applied to the
numerator and denominator of step 9 in Algorithm 2 of Giirol
etal. (2014).

5.4 Impact on a single analysis

Although the multilevel estimators computed so far are better
than MC estimators in the sense of reducing the MSE mea-
sured in the Frobenius norm, there is no guarantee that they
would yield better analysis estimates. We now perform vari-
ous minimization experiments to assess the impact of multi-
level background error covariances on the quality of the anal-
ysis.

The data assimilation scheme is a 3D ensemble variational
scheme, which means there is no time dimension and that B
is derived purely from an ensemble (or coupled ensembles),
with no parametric (climatological) hybrid component. The
observation network consists of direct observations of the
stream function at randomly selected grid points. To mimic
realistic systems, only 1 % of the model grid points are ob-
served. The observation values are derived from the truth run.
Perturbations are then added to the observations to simulate
observation error. The observation error is Gaussian, with a
uniform standard deviation set at the same value as the prior
ensemble spread (o, =~ op), i.e. 0o =9 X 10°m?s~!. Note
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Table 3. Optimally tuned localization length scales, expressed in
grid points (horizontal localization) or model layers (vertical local-
ization). The length scales are defined as Daley length scales (Da-
ley, 1993), which match the standard deviation parameter of the
Gaussian-shaped localization functions used here.

Covariances Horizontal Vertical
localization localization

MC 25 1.7

wMLMC base term 60 1.3

wMLMC correction terms 15 1.2

10k MC none none

that this value of o}, has evolved from 6 x 10°m?s~! at time
r =0h (see Sect. 4.2) to 9 x 10°m?s~ ' at 7 = 12 h.

As for previous experiments, three covariance models
are compared: a 20-member MC estimator, the same-cost
wMLMC with optimal member allocation, and a reference
B with 10000 members (“10k MC”). Including the refer-
ence B in these experiments provides a benchmark of the
gain that can be achieved by improving the estimation of
the background error covariance matrix. In operational sit-
uations, we would not know the optimal allocation and op-
timal weights for wWMLMC, as we could not afford to run a
pre-processing step to compute them in real time. Instead,
we would have to use a climatological value for the ensem-
ble sizes and weights. The weights could be updated every
few cycles, which would partially compensate for the sub-
optimality of using climatological ensemble sizes.

Both MC and wMLMC covariance estimators are local-
ized. The localization parameters are tuned on an indepen-
dent realization of the random observation network, random
observation errors, and background ensembles to minimize
the analysis error. The tuning is performed manually by grid
search on the space of localization parameters to minimize
the RMSE of the analysis. The chosen localization parame-
ter values are given in Table 3.

The minimization is performed using the updated B-
preconditioned conjugate gradient algorithm introduced in
the previous section. A total of 20 iterations are found to be
sufficient to reach convergence in all three settings, as shown
in Fig. 9. For this case, a negative B norm of the residual led
to an early stopping of the wMLMC minimization at iteration
15 out of 20.

Sensitivity to the observation location and errors is re-
moved by running the analyses 200 times with different real-
izations of the random observation network, random observa-
tion errors, and random background ensembles (for MC and
wMLMC experiments). Whisker plots of the analysis error
with respect to the truth run are shown in Fig. 10.

The impact of using wMLMC covariances in the analysis
is globally positive for all percentiles shown. However, the
magnitude is quite small, with only 1 % reduction of analysis
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error on average (not shown on Fig. 10). If compared to the
smallest possible error achieved by the 10k MC experiment
for each realization of the observation network, the relative
error reduction increases to 11 % on average. This 11 % im-
provement is of less importance than the gain observed on the
covariance estimator in Sects. 5.1 and 5.2. This is not surpris-
ing, as there is no direct relationship between the MSE of the
background error covariance estimator and the MSE of the
resulting analysis.

It is not possible from these experiments to predict how
these results would change in cycled data assimilation ex-
periments. Most of the unknown lies in how the inter-level
correlations between coupled members would evolve across
cycles. After many cycles, we expect the system to progres-
sively forget the initial conditions, and the only source of
inter-level coupling would be the random perturbations of
the innovations and (possibly) of model errors. Whether this
would be enough to maintain strong inter-level correlations
could be the topic of further research.

6 Discussion and conclusions

We have discussed in this article the potential of MLMC
methods to improve the estimation of background error co-
variances for ensemble data assimilation. Starting from an
EDA, the main idea is to remove a few ensemble members
and to reallocate the associated computational resources to
generate a much larger ensemble on coarser grids, with the
goal of obtaining less noisy estimators. By further combining
stochastically coupled ensemble members generated across
several grids, multilevel techniques provide estimators that
are not only more accurate, but also unbiased.

We have illustrated with a quasi-geostrophic model how
optimal ensemble sizes can be determined in a multilevel set-
ting. We have also illustrated how a localized multilevel co-
variance matrix can be built as a matrix-vector operator. The
approach does not require explicit storing of the covariance
matrix elements, nor does it require increasing the number
of ensemble members to be stored at the resolution of the
assimilation grid. The proposed method has a computational
cost that scales linearly with the state dimension.

However, using the resulting multilevel background error
covariance matrix in a variational data assimilation scheme
presents certain challenges since, by construction, the matrix
does not guarantee positive semi-definiteness. Although var-
ious approaches have been proposed in the literature to en-
force PSD multilevel covariance estimates, none of them are
computationally affordable for extremely high-dimensional
data assimilation problems such as those encountered in
NWP. Existing methods either increase the number of ensem-
ble members to be stored on the assimilation grid or scale at
least quadratically with the state size.

To ensure that the method is feasible for high-dimensional
problems, we proposed adapting the minimization algorithm
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to account for a non-PSD background error covariance ma-
trix, rather than trying to render the matrix PSD for the mini-
mization algorithm. In a B-preconditioned conjugate gradi-
ent minimization algorithm, for instance, several diagnos-
tics can be used to detect spurious (negative) eigenvalues in
the background error covariance matrix. In our experiments,
stopping the minimization early, as soon as negative eigen-
values are encountered, resulted in an improved analysis.
This approach offers no guarantee of convergence, however,
and further research is needed to make this algorithm more
robust. Although not explored in this study, another promis-
ing approach to enforce positive semi-definiteness would be
to hybridize the ensemble covariance matrix with a paramet-
ric covariance matrix, which is already common in ensemble
variational data assimilation.

In addition to the problem of ensuring positive semi-
definiteness, several other areas remain unexplored. For in-
stance, it is unclear how the less accurate estimation of small
scales in multilevel ensemble covariances would propagate
through the analysis and forecast cycles and how imbalance
and spin-up could accumulate or not over cycles. It is also
unclear how the method would perform in a cycled data as-
similation and forecast context, where the explicit stochastic
inputs would come from perturbations to the innovations or
from stochastic physics rather than the initial conditions as
considered here.

Finally, it is important to remark that the purpose of an
EDA is not only to provide background error covariance esti-
mates to the analysis scheme, but also to initialize an ensem-
ble prediction system (EPS). How a multilevel ensemble data
assimilation would impact the subsequent EPS is not known.
To minimize the impact on the EPS, one could enforce a min-
imum ensemble size on the fine grid. For instance, reducing
the number of ensemble members on the fine grid from 20
to 10 may be acceptable if the EPS runs with 10 or fewer
members. Another possibility would be to leverage the po-
tential of the multilevel approach for the EPS. In particular,
a coupled multilevel EDA could be used to initialize a cou-
pled multilevel EPS. In theory, multilevel techniques could
then be used to estimate any statistic of interest: expecta-
tions, percentiles, probability of exceeding a threshold, etc.
This may not be effective in practice, as optimal ensemble
sizes are likely to vary depending on the application. Using a
common approach for all applications would imply a weaker
coupling for each of these applications and therefore reduced
improvement in the statistic estimators.

Appendix A: Optimal weights for weighted MLMC

For a given set of ensemble sizes N &) (1<k<L),
Destouches et al. (2023) give a formula for the optimal
MLMC weights 8{*: 1 <k < L, and £ = k, k — 1 (see their
Sect. 6.2, derived from Schaden and Ullmann, 2020):
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k=1

k
At ) _
B
where R® is the selection matrix that selects levels k — 1 and
k in a vector of size L:

1 ifi=land j=k—1,
RO =11 ifi=2and j=F, (A2)
0 otherwise.

R(k) c RZXL ,

Here, « is the last vector of the canonical basis of RL:

L 0 ifi <L,
acRY o= ) (A3)
1 ifi=L.
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